Enhancing low cost camera laparoscopic system based on embedded systems
Raspberry pi and development a platform performance quantitative
Keywords:
camera laparoscopy, enhance vision, platform performance, raspberry piAbstract
A laparoscopic camera is a device used to view internal organs in the abdomen when a laparoscopic camera is inserted through a small incision in the abdomen.We use an embedded system to develop a low-cost laparoscopic camera and refine and evaluate the whole system. Small size production using various parameters to evaluate the usefulness of a portable, low-cost, camera-less laparoscopic simulator for training laparoscopy in abdominal surgery and the inexpensively of hospital environment constraints. Characterization of Raspberry Pi Embedded Compact system with perfect camera and image processing system. Design and compact, low-cost laparoscopic camera system and performance evaluation by hospital staff.
Downloads
References
Ali, J. M., Lam, K., & Coonar, A. S. (2018). Robotic camera assistance: the future of laparoscopic and thoracoscopic surgery?. Surgical Innovation, 25(5), 485-491.
Amin, M. S., Aydin, A., Abbud, N., Van Cleynenbreugel, B., Veneziano, D., Somani, B., ... & Ahmed, K. (2021). Evaluation of a remote-controlled laparoscopic camera holder for basic laparoscopic skills acquisition: a randomized controlled trial. Surgical endoscopy, 35(8), 4183-4191.
Bahsoun, A. N., Malik, M. M., Ahmed, K., El-Hage, O., Jaye, P., & Dasgupta, P. (2013). Tablet based simulation provides a new solution to accessing laparoscopic skills training. Journal of surgical education, 70(1), 161-163. https://doi.org/10.1016/j.jsurg.2012.08.008
Boutelle, M., Lobo, F., Odeh, M., & Stubbs, J. (2019, April). Cost Effective Laparoscopic Trainer Utilizing Magnetic-Based Position Tracking. In Frontiers in Biomedical Devices (Vol. 41037, p. V001T10A002). American Society of Mechanical Engineers.
Cartucho, J., Wang, C., Huang, B., S. Elson, D., Darzi, A., & Giannarou, S. (2021). An enhanced marker pattern that achieves improved accuracy in surgical tool tracking. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 1-9.
Chen, X., Pan, J., Chen, J., Huang, H., Wang, J., Zou, L., ... & Zheng, J. (2016). A novel portable foldable laparoscopic trainer for surgical education. Journal of Surgical Education, 73(2), 185-189.
Eubanks, T. R., Clements, R. H., Pohl, D., Williams, N., Schaad, D. C., Horgan, S., & Pellegrini, C. (1999). An objective scoring system for laparoscopic cholecystectomy. Journal of the American College of Surgeons, 189(6), 566-574. https://doi.org/10.1016/S1072-7515(99)00218-5
Gettman, M. T., Blute, M. L., Chow, G. K., Neururer, R., Bartsch, G., & Peschel, R. (2004). Robotic-assisted laparoscopic partial nephrectomy: technique and initial clinical experience with DaVinci robotic system. Urology, 64(5), 914-918. https://doi.org/10.1016/j.urology.2004.06.049
Gettman, M. T., Peschel, R., Neururer, R., & Bartsch, G. (2002). A comparison of laparoscopic pyeloplasty performed with the daVinci robotic system versus standard laparoscopic techniques: initial clinical results. European urology, 42(5), 453-458. https://doi.org/10.1016/S0302-2838(02)00373-1
Gheza, F., Oginni, F. O., Crivellaro, S., Masrur, M. A., & Adisa, A. O. (2018). Affordable laparoscopic camera system (ALCS) designed for low-and middle-income countries: a feasibility study. World journal of surgery, 42(11), 3501-3507.
Huettl, F., Lang, H., Paschold, M., Bartsch, F., Hiller, S., Hensel, B., ... & Huber, T. (2020). Quality-based assessment of camera navigation skills for laparoscopic fundoplication. Diseases of the Esophagus, 33(11), doaa042.
Jawale, S., Jesudian, G., & Agarwal, P. (2019). Rigid video laparoscope: a low-cost alternative to traditional diagnostic laparoscopy and laparoscopic surgery. Mini-invasive Surgery, 3, 19.
Kourambas, J., & Preminger, G. M. (2001). Advances in camera, video, and imaging technologies in laparoscopy. Urologic Clinics of North America, 28(1), 5-14. https://doi.org/10.1016/S0094-0143(01)80002-1
Lazarus, J. M., & Ncube, M. (2021). A low-cost wireless endoscope camera: a preliminary report. African Journal of Urology, 27(1), 1-5.
Lian, K. Y., Hsiao, S. J., & Sung, W. T. (2013). Intelligent multi-sensor control system based on innovative technology integration via ZigBee and Wi-Fi networks. Journal of network and computer applications, 36(2), 756-767.
Morgan Jr, C., & Rader, D. (1992). Laparoscopic unroofing of a renal cyst. The Journal of urology, 148(6), 1835-1836. https://doi.org/10.1016/S0022-5347(17)37043-X
Muliarta, I. N. (2016). Medical waste and its management at wangaya hospital in Denpasar. International Research Journal of Management, IT and Social Sciences, 3(5), 94-102.
Omote, K., Feussner, H., Ungeheuer, A., Arbter, K., Wei, G. Q., Siewert, J. R., & Hirzinger, G. (1999). Self-guided robotic camera control for laparoscopic surgery compared with human camera control. The American journal of surgery, 177(4), 321-324. https://doi.org/10.1016/S0002-9610(99)00055-0
Pincay, C. V. S., & López, C. G. N. (2022). Evaluation of sanitary waste generated by the care of COVID patients, in the Jipijapa Basic Hospital. Linguistics and Culture Review, 6, 13-23.
Sharpe, B. A., MacHaidze, Z., & Ogan, K. (2005). Randomized comparison of standard laparoscopic trainer to novel, at-home, low-cost, camera-less laparoscopic trainer. Urology, 66(1), 50-54. https://doi.org/10.1016/j.urology.2005.01.015
Trilling, B., Vijayan, S., Goupil, C., Kedisseh, E., Letouzey, A., Barraud, P. A., ... & Voros, S. (2020). Enhanced laparoscopic vision improves detection of intraoperative adverse events during laparoscopy. IRBM. https://doi.org/10.1016/j.irbm.2020.12.001
Vilos, G. A., Ternamian, A., Dempster, J., Laberge, P. Y., Vilos, G., Lefebvre, G., ... & Potestio, F. (2007). Laparoscopic entry: a review of techniques, technologies, and complications. Journal of Obstetrics and Gynaecology Canada, 29(5), 433-447. https://doi.org/10.1016/S1701-2163(16)35496-2
Watras, A. J., Kim, J. J., Ke, J., Liu, H., Greenberg, J. A., Heise, C. P., ... & Jiang, H. (2020). Large-Field-of-View Visualization with Small Blind Spots Utilizing Tilted Micro-Camera Array for Laparoscopic Surgery. Micromachines, 11(5), 488.
Published
How to Cite
Issue
Section
Copyright (c) 2022 International journal of engineering & computer science

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Engineering & Computer Science (IJECS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJECS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJECS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.