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Abstract---Methamphetamines are chemicals that might affect brain function and causes the development of 

addiction and other brain pathologies. It increased dopamine stimulation and would increase the formation of free 

radicals leading to dopaminergic neurotoxicity. Various therapeutic targets have been developed to prevent or 

minimize the negative effects of methamphetamine use. Increased level of oxidative stress has been considered as a 

potential trigger for neurotoxicity hence the expected ability for the administration of antioxidants to prevent 

damages caused by free radicals. The administration of antioxidants is expected to provide protective effects and 

prevent further damages created by methamphetamine exposure. Anthocyanin is a type of flavonoid is a potentially 

effective neuroprotector candidate for preventing neuronal cell death reduction, and this compound works with 

various mechanisms. 
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1   Introduction 
 

Drug and substance abuse has continuously become a significant global social issue. To date, the scale of the 

prevalence of drug and substance abuse worldwide is estimated to be 0.6% of the world adult population or equals 

about 29.5 million people (UNODC, 2017). This abuse has led to dependence or addiction that might cause both 

physical and mental effects, and even neurotoxicity or damages in the central nervous system (Sharma et al., 2014; 

Lu R et al., 2017; Allan et al., 2016).  

Psychostimulant substances including methamphetamines are chemicals that might affect the brain function and 

causes the development of addiction and other brain pathologies (Sharma et al., 2014; Krasnova et al., 2016). Long 

term and high dose short term use of methamphetamine could cause neurotoxic effect and incite several observable 

neurochemical changes, both in humans and animals. These changes are commonly found in striatum (caudate 

nucleus-putamen), hypothalamus, thalamus, cortex, and hippocampus (Yamada, 2008; Chen et al., 2014; 

Salamanca et al., 2015; Volkow et al., 2015; Heinsleigh, 2017). The occurring significant and persistent changes in 

the transporter, receptor, or enzyme levels are observed during the withdrawal phase and they signify several 

fundamental changes in the neurons. This abnormal condition contributes to the development of the brain pathology 

of addiction (Volkow, 2015; Koob, 2009; Dewi & Mustika, 2018).   

During methamphetamine administration, the increased dopamine stimulation would increase the formation of 

free radicals leading to dopaminergic neurotoxicity. Subsequently, persistent deficits of dopamine, tyrosine 

hydroxylase protein, and dopamine transporter (DAT) levels might follow (Wu et al., 2006; McFadden & Vieira-

Brock, 2016). In mice provided with 10 mg/kg methamphetamines four times, decreased levels of dopamine, 

tyrosine hydroxylase activity, and DAT was evident, as well as the decreased VMAT bonding in the striatum after 24 

hours. The decrease or loss of dopamine markers shortly thereafter has been correlated with the process of neuronal 

degeneration leading to the loss of neuronal components, which has been proposed as a histological marker of 
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neuronal damages and behavioral abnormalities (Moszczynska & Yamamoto, 2011; Anneken et al., 2015; 

Moszczynska & Callan, 2017; Partama et al., 2018).  

Various therapeutic targets have been developed to prevent or minimize the negative effects of methamphetamine 

use. Increased level of oxidative stress has been considered as a potential trigger for neurotoxicity hence the expected 

ability for the administration of antioxidants to prevent damages caused by free radicals. The administration of 

antioxidants before methamphetamine exposure is expected to provide protective effects and prevent further 

damages created by methamphetamine exposure (Gholipour, 2016; McDonnell-Dowling & Kelly, 2017).  

 

 

2   Mechanism of Methamphetamine-Induced Neurotoxicity  
 

Neurotoxicity involves the central nervous system damage that might lead to complications and significant distress. 

It can be caused by neurotoxins, psychostimulants, or excessive use of drugs. Neurotoxic effects of 

methamphetamine have been correlated with the pattern and dose of usage. Severe neural damage might cause 

serious consequences including coma, paralysis, dementia, incoordination, and convulsion. Mild damage might lead 

to memory loss, disorders of communication and motor function, and concomitantly decreases the patient’s quality 

of life (Kousik et al., 2014; Sharma et al., 2014). Methamphetamine affects brain functions hence the development 

of addiction and varied brain pathology. This psychostimulant could permeate the blood-brain barrier to become a 

serum protein and lead to a somewhat adverse effect on the brain’s microenvironment, cell edema, and even neuronal 

death. The damage of the blood-brain barrier is the first stage leading to further processes of neurotoxicity 

(Sharma et al., 2014; Yadnya et al., 2016). 

As a whole, several mechanisms are involved in the occurrence of methamphetamine neurotoxicity. Those 

include hyperthermia, oxidative stress, excitotoxicity, neuroinflammation, and other mechanisms such as microglial 

activation, blood-brain barrier dysfunction, and apoptotic pathway activation (Heinsleigh, 2017). Methamphetamine 

produces reactive oxygen species (ROS) such as OH- (hydroxyl radicals), H2O2 (hydrogen peroxide), and O2- 

(superoxide anion) due to the increased dopamine auto-oxidation. ROS increases oxidative stress markers like lipid 

peroxidase and activates protease that triggers the cascade of cell death. The concurrently occurring mitochondrial 

metabolism dysfunction also induces neurotoxicity through inhibitions of the Krebs cycle and the electron transport 

chain. Other neurotransmitters such as glutamate (the main excitation neuron) also play an important role in the 

occurrence of neurotoxicity. Glutamate accumulation causes Ca++ influx leading to increased intracellular Ca++ level. 

This high intracellular Ca++ level triggers the intracellular cascade to activate protein kinase, phosphatase, NOS 

(nitrous oxide system) to produce NO, leading to endoplasmic reticulum stress and activation of the apoptotic 

pathway. Furthermore, the process of inflammation occurs, marked by the methamphetamine-induced activation of 

NFKB, leading to the transcription of proinflammatory cytokines in the microglia. The result is the increased levels 

of IL-6, IL-1β, TNF-α, MCP-1, dan ICAM-1 (Yang et al., 2018).  

 

   

4   The Therapy of Methamphetamine-Induced Neurotoxicity 
 

Severe neurotoxicity induced by drugs or psychostimulants has been demonstrated in various studies. Efforts, as 

follow, have been attempted for developing neuroprotection from such damages (Sharma et al., 2014): 

a) 5-HT receptor modulator 

Psychostimulants induce hyperthermia by involving biogenic amine neurotransmitters. One potent biogenic 

amine that might be involved is 5-HT which affects the medication-induced body temperature regulation and 

modulates the release of other neurotransmitters through the receptor mechanism in the CNS. The 

serotonergic receptor has also been implied in the blood-brain barrier damage and edema. Serotonin receptor 

blockade inhibits the blood-brain barrier damage caused by various stressors and plays an important role in 

inhibiting the psychostimulant-induced neurotoxicity (Muller & Homberg, 2014). 

b) Antioxidant components  

Increased oxidative stress has been proposed as one of the mechanisms leading to neurotoxicity due to the 

release of free radicals and lipid peroxidase. This state might damage the cell membrane and the blood-brain 

barrier, consequently leading to cell edema and damage. Several types of antioxidants have demonstrated 

protective effects from the process of neurotoxicity (Sharma, 2014). The administration of high dose 

amphetamine or methamphetamine increases free radicals, and antioxidant administration before the 
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amphetamine exposure has led to the delay of amphetamine-induced dopaminergic deficit (Brown & 

Yamamoto, 2003).  

c) Neurotropic factors and its combination  

The benefit of neurotrophic factors has been greatly studied in CNS trauma. The addition of exogenous 

neurotrophic factors, such as the combination of BDNF and GDNF, plays a role in inhibiting 

psychostimulant-induced neurotoxicity (Nikulina et al., 2014). 

d) Nanodrug 

The psychostimulant-induced neurotoxicity might be exacerbated by several factors including nanoparticles, 

environment temperature, hypertension, or diabetes. The administration of nano-drug is effective due to its 

quick, widespread, and high-level penetration into the CNS (Sharma et al., 2014). 

 

 

5   Anthocyanin as Neuroprotector 
 

Antioxidants are classified based on their molecular characteristics into enzymatic and nonenzymatic antioxidants. 

Based on their mechanism of action, antioxidants are grouped into primary and secondary antioxidants. Primary 

antioxidants search for free radicals and inhibit the oxidation through the chain reaction disruption. Normally they 

have reactive OH and NH that inhibit proton transfer to free radical species. Secondary antioxidants break 

hydroperoxide to stable non-radical products (Smetanska, 2018). 

Flavonoid is one of the non-enzymatic antioxidants, and anthocyanin is a type of flavonoid. Other flavonoids and 

polyphenols have significantly contributed to the antioxidant activities within the body. Anthocyanin is a potent 

antioxidant found abundantly in fruits, vegetables, red wine, and purple sweet potato (Primayanti et al., 2012). 

Antioxidant properties of anthocyanin in the purple sweet potato has been demonstrated in mice, rats, and rabbits 

(Jawi et al., 2008; Jawi & Budiasa, 2011; Jawi et al., 2012). Sweet potatoes decreased the plasma MDA level in rats 

with oxidative stress (Jawi et al., 2008). Another study has investigated the effect of anthocyanin from the purple 

sweet potato in the cerebellum of the ischaemic stroke rate model induced by the Middle Cerebral Artery Occlusion 

(MCAO) technique. The study showed that the sweet potato-derived anthocyanine increased the cerebellar BDNF 

level and VEGF expression in rats experiencing an ischemic stroke. This might justify its use as one therapeutic 

modality for ischaemic stroke (Rahmawati et al., 2018). The expression of cerebellar apoptotic cells of the rats with 

ischemic stroke decreased significantly (p<0.01) after 72 hours of reperfusion therapy with purple sweet potato 

anthocyanin (Tribuana Dewi et al., 2018). The daily dose of 3 ml given for 7 days also increased the expression of 

Bcl-2 in the rat model experiencing an ischemic stroke. The potential mechanism proposed is the increased 

production of indigenous antioxidants and suppressed formation of malondialdehyde (Adnyana et al., 2018).  

Baicalein, a flavonoid derivate taken from Scutellaria baicalensis root, has demonstrated an ability to inhibit 

DAT loss in the striatum caused by the methamphetamine-induced neurotoxicity. This shows the neuroprotective 

effect of baicalein. The proposed mechanism is by inhibiting lipid peroxidation and neutrophil ROS production 

(Wu et al., 2006). Pre-methamphetamine exposure intraperitoneal injection of isoliquiritigenin (ISL), another 

flavonoid with chalcone structure and active components from licorice (Glycyrrhiza radix), has significantly 

prevented methamphetamine-induced DAT and TH (tyrosine hydroxylase) reduction. ISL also suppresses 

methamphetamine-induced glial cell activation and inhibits nitric oxide synthase expression and NF-κB activation 

through blockade of phosphorylation (Lee et al., 2009). The neuroprotective effect of polyphenol of green tea has 

been demonstrated in the nigral dopamine neuron. Pretreatment with polyphenol (-)- epigallocatechin-3-gallate 

(EGCG) prevents the degeneration of dopamine neurons in the substantia nigra through its antioxidant activity. 

Interestingly, green tea polyphenol inhibits the 3H-dopamine and 1-methyl-4- phenylpyridinium (MPP+) uptake, and 

protects the dopamine neurons from toxicity through the inhibition of the DAT activity (Chen et al., 2007). 

The neuroprotective effect of the anthocyanin has been studied with the whisker cut rat model. The rats were 

exposed to psychological and emotional distress that subsequently started the oxidative stress in the tissue. They 

displayed increased protein carbonyl and lipid peroxidase in the brain, heart, kidney, and liver. The rats were then 

fed with 100 mg/kg body weight anthocyanin extracted from the Vaccinium myrtillis L for 7 days. The 

administration of active anthocyanin in the brain depressed the stress-induced brain’s oxidative stress and dopamine 

abnormalities (Rahman et al., 2008). Anthocyanin and phenolic compounds from the boysenberry and blackcurrant 

have demonstrated a significant protective effect and restored the capacity of calcium buffering of cells affected by 

the oxidative stress induced by dopamine and amyloid β25-35 (Ghosh et al., 2007). 

Anthocyanin containing food is a potentially effective neuroprotector candidate for preventing neuronal cell 

death reduction, and this compound works with various mechanisms (Li et al., 2017). One study has investigated the 

potential benefit of anthocyanin within the purple sweet potato (Ipomoea batatas L) extract provided to 35 smokers 
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for 14 days. Significant differences (p<0.05) were found for plasma MDA and NOx levels among groups (the control 

group, P1 group that received 15 ml purple sweet potato syrup, and P2 group that received 30 ml purple sweet potato 

syrup). The plasma MDA level decrease was 35.39% and 49.87% in P1 and P2 group, respectively, while the plasma 

NOx level increase was 7.78% and 14.68% in P1 and P2, respectively (Primayanti et al., 2012). Anthocyanine within 

the purple sweet potato demonstrated stronger DPPH (1,1-diphenyl-2- picrylhydrazyl) radical finding activity than 

anthocyanine from red cabbage, grape peel, elderberry, or purple corn. Eight main components of anthocyanin within 

the purple sweet potato showed higher activity than ascorbic acid (Panda & Sonkamble, 2012). Anthocyanin is also 

effective in decreasing ROS production induced by ethanol. Its activity as an antioxidant plays an important role in 

neuroprotection (Chen & Luo, 2010).  

Parkinson is a type of degenerative disease marked by the loss of dopaminergic neurons in the midbrain area. 

Anthocyanin from blueberry, grape seeds, and Chinese mulberry, significantly suppresses the rotenone that induces 

dopaminergic cell death through the activation of microglia and the mitochondrial repair dysfunction. Mitochondrial 

dysfunction could be caused by oxidative stress and this might initiate further neuronal damage (Li et al, 2017). 

Another example of antioxidants is vitamin C that could reduce the production of free radicals, maintain the 

glutathione homeostasis, and induce the expression of HO-1 (Yang et al., 2018).  

Anthocyanin has demonstrated significant neuroprotective properties from apoptosis induced by mitochondrial 

oxidative stress (MOS), which is also effective as GSH (glutathione) in protecting the CGNs (cerebral granule 

neuron). Bcl-2 inhibition leads to a significant decrease in mitochondrial GSH and this process is prevented by 

anthocyanine (Kelsey et al., 2011).  

Studies have been conducted to develop effective pharmacological strategies to manage methamphetamine-

induced neurotoxicity. As described above, methamphetamine affects the dopamine reuptake and initiates dopamine 

oxidation. This initiates the production of ROS and RNS which would subsequently trigger the degeneration of 

dopaminergic terminals and neuronal apoptosis. This demonstrated that oxidative stress is one of the main 

mechanisms that play a role in methamphetamine-induced CNS damage. Pharmacotherapy with antioxidants could 

be administered to further explore effective strategies to protect neuronal cells from damages caused by 

methamphetamine-induced oxidative stress (Yang et al., 2018).  

 

 

6   Summary  
 

Many studies have been conducted to develop effective pharmacological strategies to manage methamphetamine-

induced neurotoxicity. Methamphetamine initiates dopamine oxidation and the production of ROS and RNS, as one 

of the main mechanisms that play a role in methamphetamine-induced neurotoxicity. Antioxidants work by slowing, 

preventing, or eliminating oxidative stress in the target molecule, directly searching for reactive oxygen species 

(ROS), or by indirectly enhancing the antioxidant defense and inhibiting ROS production. Antioxidants bind with 

free radicals to form stable new radicals through an intramolecular hydrogen bond in the subsequent oxidation. 

Anthocyanin is arguably the most potent antioxidant within the flavonoid group. Several new studies have 

demonstrated that anthocyanin could play a neuroprotective role in cases of neurotoxicity. Pharmacotherapy with 

antioxidants could be administered to protect neuronal cells from damages caused by methamphetamine-induced 

neurotoxicity. 
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