Anthocyanin as neuroprotector for methamphetamine-induced neurotoxicity

https://doi.org/10.31295/ijhms.v3n1.101

Authors

  • Putu Asih Primatanti Udayana University, Denpasar, Indonesia
  • I Made Jawi Udayana University, Denpasar, Indonesia

Keywords:

anthocyanin, methamphetamine, neurotoxicity, neuroprotector

Abstract

Methamphetamines are chemicals that might affect brain function and causes the development of addiction and other brain pathologies. It increased dopamine stimulation and would increase the formation of free radicals leading to dopaminergic neurotoxicity. Various therapeutic targets have been developed to prevent or minimize the negative effects of methamphetamine use. Increased level of oxidative stress has been considered as a potential trigger for neurotoxicity hence the expected ability for the administration of antioxidants to prevent damages caused by free radicals. The administration of antioxidants is expected to provide protective effects and prevent further damages created by methamphetamine exposure. Anthocyanin is a type of flavonoid is a potentially effective neuroprotector candidate for preventing neuronal cell death reduction, and this compound works with various mechanisms.

Downloads

Download data is not yet available.

References

Adnyana, I. M. O., Sudewi, A. R., Samatra, D. P., & Suprapta, D. N. (2018). Neuroprotective Effects of Purple Sweet Potato Balinese Cultivar in Wistar Rats With Ischemic Stroke. Open access Macedonian journal of medical sciences, 6(11), 1959. https://dx.doi.org/10.3889%2Foamjms.2018.435

Allan, J. L., McMinn, D., & Daly, M. (2016). A bidirectional relationship between executive function and health behavior: evidence, implications, and future directions. Frontiers in neuroscience, 10, 386. https://doi.org/10.3389/fnins.2016.00386

Anneken, J. H., Angoa-Pérez, M., Sati, G. C., Crich, D., & Kuhn, D. M. (2017). Dissecting the influence of two structural substituents on the differential neurotoxic effects of acute methamphetamine and mephedrone treatment on dopamine nerve endings with the use of 4-methylmethamphetamine and methcathinone. Journal of Pharmacology and Experimental Therapeutics, 360(3), 417-423. https://doi.org/10.1124/jpet.116.237768

Brown, J. M., & Yamamoto, B. K. (2003). Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress. Pharmacology & therapeutics, 99(1), 45-53. https://doi.org/10.1016/S0163-7258(03)00052-4

Chen, G., & Luo, J. (2010). Anthocyanins: are they beneficial in treating ethanol neurotoxicity?. Neurotoxicity research, 17(1), 91-101. https://doi.org/10.1007/s12640-009-9083-4

Chen, P. H., Huang, M. C., Lai, Y. C., Chen, P. Y., & Liu, H. C. (2014). Serum brain‐derived neurotrophic factor levels were reduced during methamphetamine early withdrawal. Addiction biology, 19(3), 482-485. https://doi.org/10.1111/j.1369-1600.2012.00444.x

Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical reviews, 107(7), 2891-2959.

Dewi, L. T., Adnyana, M. O., Mahdi, C., Prasetyawan, S., & Srihardyastutie, A. (2018). Study of Antocyanins Activity from Purple Sweet Potato for Reducing Apoptotic Cells Expression of The Cerebellum On Ischemic Stroke Rats. The Journal of Pure and Applied Chemistry Research, 7(2), 94.

Dewi, N. N. A., & Mustika, I. W. (2018). Nutrition content and antioxidant activity of black garlic. International Journal of Health Sciences, 2(1), 11-20. https://doi.org/10.29332/ijhs.v2n1.86

Dwi-Primayanti, I. D. A. I., Aman, I. G. M., & Agus-Bagiada, N. (2012). Ipomoea batatas Syrup Decrease Malondialdehyde and Increase Nitrous Oxide Plasma Levels Amongst Moderate Smoker Workers at Denpasar. Medical faculty Udayana University. Bali Medical Journal, 3, 125-30.

Gholipour, F., Shams, J., & Zahiroddin, A. (2017). Protective Effect of Coenzyme Q10 on Methamphetamine-Induced Apoptosis in Adult Male Rats. Novelty in Biomedicine, 5(3), 127-132. https://doi.org/10.22037/nbm.v5i3.17397

Ghosh, D., McGhie, T. K., Fisher, D. R., & Joseph, J. A. (2007). Cytoprotective effects of anthocyanins and other phenolic fractions of Boysenberry and blackcurrant on dopamine and amyloid β‐induced oxidative stress in transfected COS‐7 cells. Journal of the Science of Food and Agriculture, 87(11), 2061-2067. https://doi.org/10.1002/jsfa.2964

Heinsleigh, E. (2017). Review: Mechanisms of Methamphetamine Neurotoxicity. Journal of Pharmacology & Clinical Toxicology, 5(5), 1087

Jawi, I. M., & Budiasa, K. (2011). Ekstrak air umbi ubi jalar ungu menurunkan total kolesterol serta meningkatkan total antioksidan darah kelinci. Jurnal Veteriner, 12(2), 120-125.

Jawi, I. M., Suprapta, D. N., Dwi, S. U., & Wiwiek, I. (2008). Ubi jalar ungu menurunkan kadar MDA dalam darah dan hati mencit setelah aktivitas fisik maksimal. Jurnal Veteriner Jurnal Kedokteran Hewan Indonesia, 9(2), 65-72.

Jawi, I. M., Suprapta, D. N., Dwi, S. U., & Wiwiek, I. (2008). Ubi jalar ungu menurunkan kadar MDA dalam darah dan hati mencit setelah aktivitas fisik maksimal. Jurnal Veteriner Jurnal Kedokteran Hewan Indonesia, 9(2), 65-72.

Jawi, I., Sutirtayasa, I., Suprapta, D. N., & Mahendra, A. N. (2012). Hypoglicemic and antioxidant activities of balinese purple sweet potato (Ipomoea batatas L) in induced diabetic rat.

Kelsey, N., Hulick, W., Winter, A., Ross, E., & Linseman, D. (2011). Neuroprotective effects of anthocyanins on apoptosis induced by mitochondrial oxidative stress. Nutritional neuroscience, 14(6), 249-259. https://doi.org/10.1179/1476830511Y.0000000020

Koob, G. F. (2009). Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology, 56, 18-31. https://doi.org/10.1016/j.neuropharm.2008.07.043

Koob, G. F. (2009). Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology, 56, 18-31. https://doi.org/10.1016/j.neuropharm.2008.07.043

Kousik, S. M., Napier, T. C., Ross, R. D., Sumner, D. R., & Carvey, P. M. (2014). Dopamine receptors and the persistent neurovascular dysregulation induced by methamphetamine self-administration in rats. Journal of Pharmacology and Experimental Therapeutics, 351(2), 432-439. https://doi.org/10.1124/jpet.114.217802

Krasnova, I. N., Justinova, Z., & Cadet, J. L. (2016). Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways. Psychopharmacology, 233(10), 1945-1962. https://doi.org/10.1007/s00213-016-4235-8

Lee, M. J., Yang, C. H., Jeon, J. P., & Hwang, M. (2009). Protective effects of isoliquiritigenin against methamphetamine-induced neurotoxicity in mice. Journal of pharmacological sciences, 111(2), 216-220. https://doi.org/10.1254/jphs.09153SC

Li, D., Wang, P., Luo, Y., Zhao, M., & Chen, F. (2017). Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Critical reviews in food science and nutrition, 57(8), 1729-1741. https://doi.org/10.1080/10408398.2015.1030064

Lu, R. B., Lee, S. Y., Wang, T. Y., Chang, Y. H., Chen, P. S., Yang, Y. K., ... & Chen, S. L. (2017). Long-term heroin use was associated with the downregulation of systemic platelets, BDNF, and TGF-β1, and it contributed to the disruption of executive function in Taiwanese Han Chinese. Drug and alcohol dependence, 179, 139-145. https://doi.org/10.1016/j.drugalcdep.2017.06.035

McDonnell-Dowling, K., & P Kelly, J. (2017). The role of oxidative stress in methamphetamine-induced toxicity and sources of variation in the design of animal studies. Current neuropharmacology, 15(2), 300-314.

McFadden, L. M., & Vieira-Brock, P. L. (2016). The Persistent Neurotoxic Effects of Methamphetamine on Dopaminergic and Serotonergic Markers in Male and Female Rats. Toxicology: open access, 2(2). https://dx.doi.org/10.4172%2F2476-2067.1000116

Moszczynska, A., & Callan, S. P. (2017). Molecular, behavioral, and physiological consequences of methamphetamine neurotoxicity: implications for treatment. Journal of Pharmacology and Experimental Therapeutics, 362(3), 474-488. https://doi.org/10.1124/jpet.116.238501

Moszczynska, A., & Yamamoto, B. K. (2011). Methamphetamine oxidatively damages parkin and decreases the activity of 26S proteasome in vivo. Journal of neurochemistry, 116(6), 1005-1017. https://doi.org/10.1111/j.1471-4159.2010.07147.x

Mueller, C. P., & Homberg, J. R. (2015). The role of serotonin in drug use and addiction. Behavioural brain research, 277, 146-192. https://doi.org/10.1016/j.bbr.2014.04.007

Nikulina, E. M., Johnston, C. E., Wang, J., & Hammer Jr, R. P. (2014). Neurotrophins in the ventral tegmental area: Role in social stress, mood disorders and drug abuse. Neuroscience, 282, 122-138. https://doi.org/10.1016/j.neuroscience.2014.05.028

Panda, V., & Sonkamble, M. (2012). Phytochemical constituents and pharmacological activities of Ipomoea batatas l.(Lam)—a review. International Journal of Research in Phytochemistry and Pharmacology, 2(1), 25-34.

Partama, I. B. G., Yadnya, T. G. B., Trisnadewi, A. A. A. S., & Sukada, I. K. (2018). Increasing nutrition value of fermented rice hull through biofermentation of lactobacillus complex bacteria supplemented. International Journal of Life Sciences, 2(2), 73-82. https://doi.org/10.29332/ijls.v2n2.179

Rahman, MY (2008). The Process of Issuance of Location Determination in the Context of Land Procurement for Implementation of Development in the Public Interest in Kendal District (Doctoral dissertation, Semarang State University).

Salamanca, S. A., Sorrentino, E. E., Nosanchuk, J. D., & Martinez, L. R. (2015). Impact of methamphetamine on infection and immunity. Frontiers in neuroscience, 8, 445. https://doi.org/10.3389/fnins.2014.00445

Sharma, H. S., Menon, P., Lafuente, J. V., Muresanu, D. F., Tian, Z. R., Patnaik, R., & Sharma, A. (2014). Development of in vivo drug-induced neurotoxicity models. Expert opinion on drug metabolism & toxicology, 10(12), 1637-1661. https://doi.org/10.1517/17425255.2014.970168

Smetanska, I. (2018). Sustainable production of polyphenols and antioxidants by plant in vitro cultures. Bioprocessing of Plant In Vitro Systems, 225-269. https://doi.org/10.1007/978-3-319-54600-1_2

Volkow, N. D., Koob, G., & Baler, R. (2015). Biomarkers in substance use disorders. ACS chemical neuroscience, 6(4), 522-525. https://doi.org/10.1021/acschemneuro.5b00067

Wati, E. R., Prasetyawan, S., Mahdi, C., Srihardyastutie, A., & Adnyana, M. O. (2018). Potential of Anthocyanin From Purple Sweet Potato (Ipomoea batatas) To Increase BDNF Level and VEGF Expression in The Cerebellum of Ischemic Stroke Rats. The Journal of Pure and Applied Chemistry Research, 7(1), 45. https://doi.org/10.21776/ub.jpacr.2018.007.01.363

Wu, P. H., Shen, Y. C., Wang, Y. H., Chi, C. W., & Yen, J. C. (2006). Baicalein attenuates methamphetamine-induced loss of dopamine transporter in mouse striatum. Toxicology, 226(2-3), 238-245. https://doi.org/10.1016/j.tox.2006.06.015

Yadnya, T. B., Trisnadewi, A. A., Sukada, I. K., & Oka, I. G. L. (2016). The effect of fermented purple sweet potato (ipomoea batatas l) skin in diets on feed and anthocyanin consumption, carcass characteristics, anthioxidant profile and meat texture of Bali duck. International Research Journal of Engineering, IT & Scientific Research, 2(9), 73-80.

Yamada, K. I. Y. O. F. U. M. I. (2008). Pro-addictive and anti-addictive factors for drug dependence. Nagoya J Med Sci, 70, 67-72.

Yang, X., Wang, Y., Li, Q., Zhong, Y., Chen, L., Du, Y., ... & Yan, J. (2018). The main molecular mechanisms underlying methamphetamine-induced neurotoxicity and implications for pharmacological treatment. Frontiers in molecular neuroscience, 11, 186. https://doi.org/10.3389/fnmol.2018.00186

Published

2019-09-17

How to Cite

Primatanti, P. A., & Jawi, I. M. (2019). Anthocyanin as neuroprotector for methamphetamine-induced neurotoxicity. International Journal of Health & Medical Sciences, 3(1), 11-16. https://doi.org/10.31295/ijhms.v3n1.101