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Abstract---In this paper we consider a problem of nonlinear heat conduction with double nonlinearity under the 

action of strong absorption. For which an exact analytical solution is found, analysis of which makes it possible to 

reveal several characteristic features of thermal processes in nonlinear media. The following nonlinear effects are 

established: an inertial effect of a finite velocity of propagation of thermal disturbances, spatial heat localization, 

and finite time effect i.e. existence of a thermal structure in a medium with strong absorption. The following 

nonlinear effects are observed in the problem under consideration: the inertial effect of an ultimate speed of 

propagation of thermal perturbations, the effect of spatial localization of heat, and the effect of ultimate time of the 

thermal structure in an absorption medium. 
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Introduction 

 

In the investigation of the processes of energy transfer in high-temperature environments, a number of their special 

properties should be taken into account (Zel'Dovich & Raizer, 2002; Bernis & Friedman, 1990). For example, the 

dependence of heat capacity and the coefficient of thermal conductivity on temperature, it is necessary to take into 

account the contribution of volume radiation to the energy balance, the processes of exo and endothermic ionization, 

the leakage of chemical reactions, combustion, etc. The consideration of these factors determines the nonlinearity of 

the equation of energy transfer (Li & Cui, 2003; Abbasov, 2019). Along with this, one can also take into account 

convective heat transfer and its influence on the evolution of the process under investigation. The intensive 

development of the theory of nonlinear transfer was stimulated by studies in plasma physics (Jungel, 2017; Aripov & 

Sayfullayeva, 2020). Here, fundamental results have recently been obtained, and several nonlinear effects have been 

discovered, which determine the properties of inertia and localization of thermal.  

 

Problem formulation 

 

Let us consider the following problem about the effect of an instantaneous concentrated source of heat in an 

incompressible nonlinear medium with a coefficient with double nonlinearity of thermal conductivity of temperature 

and its grabient in the presence of volume absorption of thermal energy in it, which power depends on the 

temperature and explicitly on the time according to the power-law (Zmitrenko & Kurdyumov, 1992; Kurdyumov, 

1990). Such a non-stationary process of heat conduction is described by the following Cauchy problem for a 

degenerate quasilinear parabolic equation is not divergence form 
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Here, и(х, t) — temperature ,m,k,p— the parameter of nonlinearity of the medium: b>0, qbt u - is the power of 

volumetric heat absorption; (t)v - a speed of a convective transfer; 
0Q -the value that determines the energy of the 

heat source at the initial moment; ( )x — Dirac’s delta function that is characterizing the initial temperature 

distribution of a concentrated heat source placed at the beginning of the coordinate (Martinson & Pavlov, 1972; 

Mersaid, 2013). To investigating different qualitative properties of the solutions of the problem Cauchy and 

boundary value problem for a particular value of numerical parameters devoted many works[1-10]. For instance in 

the case , (t) 0, 0 1m k v q     by analyzing an exact solution K.Martinson [JVMMF1984] when 
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establish the following properties of solutions: an inertial effect of a finite velocity of propagation of thermal 

disturbances, spatial heat localization, and finite time localization solution effect. Let us show that with  
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problem (1) has a definite one. To show it, we consider the class of radially symmetric solutions of the equation, 

obtained by following 
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Then the unknown function w (t, r) satisfies the equation 
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Further assuming 
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where, a (t), f (t)- are the functions to be defined, and through ( )n 
, the expression of ( ) max(0, )n n   is 

designated (Bhagavannarayana et al., 2011; Bhat & Dharmaprakash, 2002). Calculating the derivatives of the 

function of w (t, r), we have 
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Then 
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or because 
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expression (6) will be rewritten as 
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If 
1 1 1q    

Then, through substituting the calculated expressions into equation (4) we get the following: 
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From here we have 
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Now from here, to define the functions a(t), f(t), we obtain a system of nonlinear differential equations  
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And the equation (9) has the following general solution 
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where c constant integration. 

Rewrite equation (11) as 

1 2( ) ( )
df

b t f b t
dt

  (12) 

 

Then, taking into account (10) from (11), we have 
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Hence the solution tending to at 0t    has the form of 
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The equation (12) is a first-order linear equation. It is integrated. Its overall solution is: 
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When с=0, we have 
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The theorem 1.Let in equation (1) 
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and a(t), f(t)-are the functions defined above.Then for the problem (1), the phenomenon KSRV takes place. 

 

The theorem 2. Let into an Equation(1) 
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and a(t), f(t)- are the functions defined above. 

Then for the problem (1), the spatial localization of the solution takes place. 

Fast diffusion case: 
( 2) 0k p m n     

 

The theorem 3. Let in the equation (1) 
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and a(t), f(t) are the functions defined above. 

Then for the solution of problem (1), there is a place for the estimate. 
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The final time of the thermal impulse is due to the influence of the volume absorption of thermal energy is 

considered medium (Shkir & Abbas, 2014; Isaenko et al., 2005). Indeed, if we consider even the initial temperature 

distribution of the form ( ,0) 0u х  , then due to the volumetric absorption of heat, the temperature of the 

medium will decrease over time (Dehghan, 2001; Yang et al., 2008). The following nonlinear effects are observed in 

the problem under consideration: the inertial effect of an ultimate speed of propagation of thermal perturbations, the 

effect of spatial localization of heat, and the effect of ultimate time of the thermal structure in an absorption medium 

(Wei et al., 2006; Mercaldo et al., 2011). 
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