Identification of local sesars of tejakula buleleng bali with anomaly gravity data using second vertical derivative method

  • Komang Ngurah Suarbawa Physics Study Program, Faculty of Mathematics and Natural Sciences, Udayana University, Badung, Bali, Indonesia
  • I Gusti Agung Putra Adnyana Physics Study Program, Faculty of Mathematics and Natural Sciences, Udayana University, Badung, Bali, Indonesia
  • Elvin Riyono Physics Study Program, Faculty of Mathematics and Natural Sciences, Udayana University, Badung, Bali, Indonesia
Keywords: fault model, gravity anomaly, SVD, Tejakula fault

Abstract

Research has been carried out related to subsurface structures in the Tejakula Buleleng Bali area and its surroundings using the gravity method. This study aims to identify the local Tejakula fault. The data used in this study is gravity anomaly data obtained from observations of Geodetic Satellite (GEOSAT). The method used in interpreting the type of disturbance uses the Second Vertical Derivative method, which then produces two-dimensional (2D) and three-dimensional (3D) fault model interpretations. Based on the results obtained in the study, the condition of the bouguer gravity anomaly value in the Tejakula area and its surroundings at the research location is in the range of 65 mGal to 185 mGal. Meanwhile, based on the Second Vertical Derivative method in determining the type of fault, the Tejakula Fault can be categorized as a mandatory fault with an upward trend.

Downloads

Download data is not yet available.

References

Buttkus, B. (2000). Two-Dimensional Filters for Gravity and Magnetic Data. In Spectral Analysis and Filter Theory in Applied Geophysics (pp. 581-607). Springer, Berlin, Heidelberg.

Cheng, Q. (2012). Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. https://doi.org/10.1016/j.gexplo.2012.07.007

Cooper, G. R. J., & Cowan, D. R. (2004). Filtering using variable order vertical derivatives. Computers & Geosciences, 30(5), 455-459. https://doi.org/10.1016/j.cageo.2004.03.001

Deschamps, F., Trampert, J., & Snieder, R. (2002). Anomalies of temperature and iron in the uppermost mantle inferred from gravity data and tomographic models. Physics of the Earth and Planetary Interiors, 129(3-4), 245-264. https://doi.org/10.1016/S0031-9201(01)00294-1

Elkins, T. A. (1951). The second derivative method of gravity interpretation. Geophysics, 16(1), 29-50.

Gönenç, T. (2014). Investigation of distribution of embedded shallow structures using the first order vertical derivative of gravity data. Journal of Applied Geophysics, 104, 44-57. https://doi.org/10.1016/j.jappgeo.2014.02.010

Hadiwidjojo, M. M. P., Samodra, H., & Amin, T. C. (1998). Geological map of the Bali sheet, Nusa Tenggara. Geological Research and Development Center, Bandung.

Kara, İ., Bal, O. T., Tur, H., & Ates, A. (2014). A new efficient method for topographic distortion correction, analytical continuation, vertical derivatives and using equivalent source technique: Application to field data. Journal of Applied Geophysics, 106, 67-76. https://doi.org/10.1016/j.jappgeo.2014.04.011

Masruri, M. F. I., Priadi, R., Nanda, B. M. T. F., & Ahadi, S. (2018, April). Analysis of Preseismic Event Using Seismo-electromagnetics Data. In 2018 2nd International Conference on Applied Electromagnetic Technology (AEMT) (pp. 1-7). IEEE.

McCaffrey, R., & Nabelek, J. (1987). Earthquakes, gravity, and the origin of the Bali Basin: an example of a nascent continental fold‐and‐thrust belt. Journal of Geophysical Research: Solid Earth, 92(B1), 441-460.

Pal, S. K., & Majumdar, T. J. (2015). Geological appraisal over the Singhbhum-Orissa Craton, India using GOCE, EIGEN6-C2 and in situ gravity data. International Journal of Applied Earth Observation and Geoinformation, 35, 96-119. https://doi.org/10.1016/j.jag.2014.06.007

Reynolds, J. M. (2011). An introduction to applied and environmental geophysics. John Wiley & Sons.

Serway, R. A., & Jewett, J. W. (2018). Physics for scientists and engineers with modern physics. Cengage learning.

Telford, W. M., Telford, W. M., Geldart, L. P., Sheriff, R. E., & Sheriff, R. E. (1990). Applied geophysics. Cambridge university press.

Wang, J., Meng, X., & Li, F. (2015). Improved curvature gravity gradient tensor with principal component analysis and its application in edge detection of gravity data. Journal of Applied Geophysics, 118, 106-114. https://doi.org/10.1016/j.jappgeo.2015.04.013

Zeng, H., Zhang, Q., Li, Y., & Liu, J. (1997). Crustal structure inferred from gravity anomalies in South China. Tectonophysics, 283(1-4), 189-203. https://doi.org/10.1016/S0040-1951(97)00153-4

Published
2020-09-16
How to Cite
Suarbawa, K. N., Adnyana, I. G. A. P., & Riyono, E. (2020). Identification of local sesars of tejakula buleleng bali with anomaly gravity data using second vertical derivative method. International Journal of Physics & Mathematics, 3(1), 18-25. https://doi.org/10.31295/ijpm.v3n1.170