Measurement of small deformations with a Mach-Zehnder interferometer

https://doi.org/10.31295/ijpm.v4n1.1770

Authors

  • Akhror Ibragimovich Mamadjanov Head of Physics Department, Namangan engineering-construction Institute, Uzbekistan
  • Adhamjon Raxmatillayevich Turgunov Teacher of Physics Department, Namangan engineering-construction Institute, Uzbekistan

Keywords:

coherent wave, deformation, Joung modulus, Mach - Zehnder interferometer, path difference

Abstract

We show a method for measuring small deformations of solids using the principle of the Max-Zender interferometer. In the interference pattern, we find an analytical expression for the dependence of the maximum displacement of the displacement, i.e., the change in the order of interference, on the deformation force of the solid. We will show you how to determine the Joung modulus for a solid body using specific expressions. The proposed method shows that the measurement accuracy of the deformation of solids is about 10-5 m. We describe the analytical expressions obtained for the interference order in two- and three-dimensional graphical form.

Downloads

Download data is not yet available.

References

Beck, M., & Walmsley, I. A. (1990). Measurement of group delay with high temporal and spectral resolution. Optics letters, 15(9), 492-494.

Beck, M., Walmsley, I. A., & Kafka, J. D. (1991). Group delay measurements of optical components near 800 nm. IEEE journal of quantum electronics, 27(8), 2074-2081.

Bor, Z., Osvay, K., Rácz, B., & Szabó, G. (1990). Group refractive index measurement by Michelson interferometer. Optics communications, 78(2), 109-112.

Chekroun, M., Le Marrec, L., Abraham, O., Durand, O., & Villain, G. (2009). Analysis of coherent surface wave dispersion and attenuation for non-destructive testing of concrete. Ultrasonics, 49(8), 743-751. https://doi.org/10.1016/j.ultras.2009.05.006

Cooper, C. A., Young, R. J., & Halsall, M. (2001). Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Composites Part A: Applied Science and Manufacturing, 32(3-4), 401-411. https://doi.org/10.1016/S1359-835X(00)00107-X

Diddams, S., & Diels, J. C. (1996). Dispersion measurements with white-light interferometry. JOSA B, 13(6), 1120-1129.

Galdieri, F. J., Sutili, T., Melnikoff, N., Bordonalli, A. C., & Conforti, E. (2020). Influence of exterior acoustic noise on narrow linewidth laser measurements using self-homodyne optical fiber interferometer. Optik, 204, 164101. https://doi.org/10.1016/j.ijleo.2019.164101

Goranson, R. W., & Adams, L. H. (1933). A method for the precise measurement of optical path-difference, especially in stressed glass. Journal of the Franklin Institute, 216(4), 475-504. https://doi.org/10.1016/S0016-0032(33)90918-7

Granato, A., Hikata, A., & Lücke, K. (1958). Recovery of damping and modulus changes following plastic deformation. Acta metallurgica, 6(7), 470-480. https://doi.org/10.1016/0001-6160(58)90110-X

Hernández, E. H. O., Moncayo, E. H. O., Sánchez, L. K. M., & de Calderero, R. P. (2017). Behavior of clayey soil existing in the portoviejo canton and its neutralization characteristics. International research journal of engineering, IT & scientific research, 3(6), 1-10.

Khashan, M. A., & MA, K. (1983). Comparison Of Group And Phase Volicities Of Light Using The Michelson Interferometer.

Kovács, A. P., Osvay, K., Bor, Z., & Szipöcs, R. (1995). Group-delay measurement on laser mirrors by spectrally resolved white-light interferometry. Optics Letters, 20(7), 788-790.

Macías, T. M. D., Meza, A. K. T., Garcia, B. B. B., & Bozada, M. A. T. (2018). Characterization of Physical and Motor Disability at the Technical University of Manabí. International Research Journal of Management, IT and Social Sciences, 5(2), 1-8.

Pedrotti, L. S. (2008). Basic physical optics. Fundamentals of Photonics, 1, 152-154.

Sainz, C., Jourdian, P., Escalona, R., & Calatroni, J. (1994). Real time interferometric measurements of dispersion curves. Optics Communications, 110(3-4), 381-390.

Savelev, I. V. (1970). Kurs obshey fiziki (The General physics course).

Shin, H. K., Lockwood, D. J., & Baribeau, J. M. (2000). Strain in coherent-wave SiGe/Si superlattices. Solid State Communications, 114(10), 505-510. https://doi.org/10.1016/S0038-1098(00)00111-3

Sivukhin, D. V. (1979). General course of physics. Vol. 1. Mechanics, Nauka, Moscow.

Taraphdar, C., Chattopadhyay, T., & Roy, J. N. (2010). Mach–Zehnder interferometer-based all-optical reversible logic gate. Optics & Laser Technology, 42(2), 249-259. https://doi.org/10.1016/j.optlastec.2009.06.017

Weisser, M., Tovar, G., Mittler-Neher, S., Knoll, W., Brosinger, F., Freimuth, H., ... & Ehrfeld, W. (1999). Specific bio-recognition reactions observed with an integrated Mach–Zehnder interferometer. Biosensors and Bioelectronics, 14(4), 405-411. https://doi.org/10.1016/S0956-5663(98)00124-9

Wiesauer, K., Dufau, A. S., Götzinger, E., Pircher, M., Hitzenberger, C. K., & Stifter, D. (2005). Non-destructive quantification of internal stress in polymer materials by polarisation sensitive optical coherence tomography. Acta Materialia, 53(9), 2785-2791. https://doi.org/10.1016/j.actamat.2005.02.034

Zhao, Y., Zhao, H., Lv, R. Q., & Zhao, J. (2019). Review of optical fiber Mach–Zehnder interferometers with micro-cavity fabricated by femtosecond laser and sensing applications. Optics and Lasers in Engineering, 117, 7-20. https://doi.org/10.1016/j.optlaseng.2018.12.013

Published

2021-10-03

How to Cite

Mamadjanov, A. I., & Turgunov, A. R. (2021). Measurement of small deformations with a Mach-Zehnder interferometer. International Journal of Physics & Mathematics, 4(1), 33-38. https://doi.org/10.31295/ijpm.v4n1.1770