Some electrophysical properties of polycrystalline silicon obtained in a solar oven

https://doi.org/10.31295/ijpm.v4n1.1771

Authors

  • Lutfiddin Omanovich Olimov Professor, Andijan Machine Building Institute, Andijan, Uzbekistan
  • Iqboljon Ibroximovich Anarboyev PhD Doctoral Student, Andijan Machine-Building Institute, Andijan, Uzbekistan

Keywords:

a solar oven, grain boundary regions, microstructure, polycrystalline silicon, semiconductor, specific resistance

Abstract

The article describes the results of the study of the microstructure and some electrophysical properties of silicon obtained by re-melting in a solar oven. It was found that the granularity of polycrystalline silicon consists of Si atoms with a size of 10-15 ?m, the roughness of its surface. Decrease in specific resistance at T£600 K, increase in concentration of ionized input atoms and concentration of charge carriers, the position at ?~600÷700 K is based on the decrease in the free path of the charge carriers as a result of thermal vibrations of the crystal lattice, the situation at T?700 K K was explained by the emergence of new recombination centers specific to localized traps. Polycrystalline silicon heated by sunlight does not create a barrier effect of traps localized in the grain boundary regions from polycrystalline silicon obtained by other methods. This can expand the possibilities of creating highly efficient semiconductor devices, solar cells, thermoelectric materials for micro- and nanoelectronics, photovoltaic.

Downloads

Download data is not yet available.

References

Abdurakhmanov, B. M., Olimov, L. O., & Saidov, M. S. (2008). Electrophysical properties of solar polycrystalline silicon and its n+-p structures at elevated temperatures. Applied Solar Energy, 44(1), 46-52.

Badwal, S. P. S. (1995). Grain boundary resistivity in zirconia-based materials: effect of sintering temperatures and impurities. Solid State Ionics, 76(1-2), 67-80. https://doi.org/10.1016/0167-2738(94)00236-L

Braga, A. F. B., Moreira, S. P., Zampieri, P. R., Bacchin, J. M. G., & Mei, P. R. (2008). New processes for the production of solar-grade polycrystalline silicon: A review. Solar energy materials and solar cells, 92(4), 418-424. https://doi.org/10.1016/j.solmat.2007.10.003

Bratus, V. Y., Yukhimchuk, V. A., Berezhinsky, L. I., Valakh, M. Y., Vorona, I. P., Indutnyi, I. Z., ... & Yanchuk, I. B. (2001). Structural transformations and silicon nanocrystallite formation in SiO x films. Semiconductors, 35(7), 821-826.

Burgelman, M., Nollet, P., & Degrave, S. (2000). Modelling polycrystalline semiconductor solar cells. Thin solid films, 361, 527-532. https://doi.org/10.1016/S0040-6090(99)00825-1

Donohue, L. A., Smith, I. J., Münz, W. D., Petrov, I., & Greene, J. E. (1997). Microstructure and oxidation-resistance of Ti1? x? y? zAlxCryYzN layers grown by combined steered-arc/unbalanced-magnetron-sputter deposition. Surface and Coatings Technology, 94, 226-231. https://doi.org/10.1016/S0257-8972(97)00249-1

Fujiwara, K., Pan, W., Sawada, K., Tokairin, M., Usami, N., Nose, Y., ... & Nakajima, K. (2006). Directional growth method to obtain high quality polycrystalline silicon from its melt. Journal of Crystal Growth, 292(2), 282-285. https://doi.org/10.1016/j.jcrysgro.2006.04.016

Georgali, B., & Tsakiridis, P. E. (2005). Microstructure of fire-damaged concrete. A case study. Cement and Concrete composites, 27(2), 255-259. https://doi.org/10.1016/j.cemconcomp.2004.02.022

Gnidenko, A. A., & Zavodinsky, V. G. (2008). Effect of oxygen on structure and electronic properties of silicon nanoclusters Si n (n= 5, 6, 10, 18). Semiconductors, 42(7), 800-804.

Harbek G. (1989). Polycrystalline semiconductors. Physical properties and applications: (Moscow, Russia).

Hernández-Luna, G., & Huelsz, G. (2008). A solar oven for intertropical zones: Evaluation of the cooking process. Energy conversion and management, 49(12), 3622-3626. https://doi.org/10.1016/j.enconman.2008.07.012

Imai, S., & Fujimoto, M. (2006). Formation of (111) nanotwin lamellae hillocks in polycrystalline silicon thin films caused by deposition of silicon dioxide layer. Applied physics letters, 88(2), 021912.

Kazmerski, L. L., Hallerdt, M., Ireland, P. J., Mickelsen, R. A., & Chen, W. S. (1983). Optical properties and grain boundary effects in CuInSe2. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1(2), 395-398.

Mantuano, J. L. S., Vera, M. J. C., & Cedeño, E. N. (2019). Factors of photovoltaic system cost affect in Ecuador. International Research Journal of Engineering, IT and Scientific Research, 5(6), 1-11.

Oldham, W. G., & Milnes, A. G. (1963). nn Semiconductor heterojunctions. Solid-State Electronics, 6(2), 121-132. https://doi.org/10.1016/0038-1101(63)90005-4

Olimov, L. O. (2010). Adsorption of alkali metals and their effect on electronic properties of grain boundaries in bulk of polycrystalline silicon. Semiconductors, 44(5), 602-604.

Olimov, L. O. (2010). Model of the grain boundary in pn structures based on polycrystalline semiconductors. Applied Solar Energy, 46(2), 118-121.

Olimov, L. O. (2012). Effect of alkali metals on the electronic properties of grain boundaries on a polycrystalline silicon surface. Semiconductors, 46(7), 898-900.

Olimov, L. O. (2016). The grain boundaries of polycrystalline silicon: microwaves, charge states and rn-junction. Autoreferaty of doctoral dissertation.

Olimov, L. O., & Anarboyev, I. (2021). Some electrophysical properties of polycrystalline silicon obtained in a solar oven.

Olimov, L. O., Abdurakhmanov, B. M., & Teshaboev, A. (2014). Influence of alkali metal atoms on transport of charge carriers in the between grain boundaries of polycrystalline silicon.". Material Science, (1), 79-82.

Olimov, L. O., Sokhibova, Z. M., & Abdurakhmanov, B. M. (2018). Some features of charge carrier transfer in granular semiconductors. I. Structure and mechanism of the phenomenon. International Journal of Advanced Research in Engineering and Applied Sciences (ISSN: 2278-6252) Vol, 7, 1-9.

Saidov, M. S., Abdurakhmanov, B. M., & Olimov, L. O. (2007). Impurity thermovoltaic effect in the grain boundaries of a polycrystalline silicon solar cell. Applied Solar Energy, 43(4), 203-206.

Sánchez, L. K. M., Hernández, E. H. O., Fernández, L. S. Q., & Párraga, W. E. R. (2018). Determination of Physical and Mechanical Properties of Quarries Dos Bocas Mouths and Mine Copeto for High Resistance Concretes. International Research Journal of Engineering, IT and Scientific Research, 4(2), 33-40.

Vachhani, S. J., Doherty, R. D., & Kalidindi, S. R. (2016). Studies of grain boundary regions in deformed polycrystalline aluminum using spherical nanoindentation. International Journal of Plasticity, 81, 87-101. https://doi.org/10.1016/j.ijplas.2016.01.001

Vavilov, V. S., Kiselev, V. F., & Mukashev, B. N. (1990). Defects in Silicon and on its Surface. Science, 211.

Zafar, H. A., Badar, A. W., Butt, F. S., Khan, M. Y., & Siddiqui, M. S. (2019). Numerical modeling and parametric study of an innovative solar oven. Solar Energy, 187, 411-426. https://doi.org/10.1016/j.solener.2019.05.064

Published

2021-10-04

How to Cite

Olimov, L. O., & Anarboyev, I. I. (2021). Some electrophysical properties of polycrystalline silicon obtained in a solar oven. International Journal of Physics & Mathematics, 4(1), 39-45. https://doi.org/10.31295/ijpm.v4n1.1771