Optimization of infusion supply using the probabilistic economic order quantity (EOQ) method at Sanglah Center General Hospital



  • I Putu Yudi Prabhadika Universitas Warmadewa, Denpasar, Indonesia
  • Ni Ketut Tari Tastrawati Universitas Udayana, Denpasar, Indonesia
  • Luh Putu Ida Harini Universitas Udayana, Denpasar, Indonesia
  • Ida Ayu Rosa Dewinta Universitas Warmadewa, Denpasar, Indonesia


ARIMA, economic order quantity, forecasting, infusion supply, operational research


Inventory planning is important to avoid the advantages or lack of goods. Hospitals as health care providers also have a share in the stock of goods, one of which is infusion. This study aims to optimize infusion supply at Sanglah Central General Hospital using Economic Order Quantity (EOQ) method with (q, r) model. The forecasting method used in forecasting infusion requirements at Sanglah Hospital is an Autoregressive Integrated Moving Average (ARIMA) method. The results of this study indicate the amount of infusion of NaCl 0.9% 500 ml and 5% 500 ml glucose infusion which is expected to be ordered by Sanglah Hospital at the beginning of the booking period is 11,921 and 560 units. Sanglah Hospital need to re-order when the stock of infusion of NaCl 0.9% 500 ml touched the number 3,593 and 5% 500 ml glucose infusion stock touched 202 units. To anticipate the spike of demand, Sanglah Hospital is expected to provide infusion as a safety reserve of 190 units for infusion of NaCl type 0.9% 500 ml and 21 units for glucose type 5% 500 ml. The total inventory cost of the infusion to be issued by Sanglah Hospital in the planning of the infusion needs for 6 months is also obtained.


Download data is not yet available.


ArunKumar, K. E., Kalaga, D. V., Kumar, C. M. S., Chilkoor, G., Kawaji, M., & Brenza, T. M. (2021). Forecasting the dynamics of cumulative COVID-19 cases (confirmed, recovered and deaths) for top-16 countries using statistical machine learning models: Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Average (SARIMA). Applied soft computing, 103, 107161. https://doi.org/10.1016/j.asoc.2021.107161

Bahagia, S. N. (2006). Sistem Inventori (Bandung.

Chen, S. C., Cárdenas-Barrón, L. E., & Teng, J. T. (2014). Retailer’s economic order quantity when the supplier offers conditionally permissible delay in payments link to order quantity. International journal of production Economics, 155, 284-291. https://doi.org/10.1016/j.ijpe.2013.05.032

Ernawati, Y., & Sunarsih, S. (2008). Sistem pengendalian Persediaan Model Probabilistik dengan “Back Order Policy”. JURNAL MATEMATIKA DAN KOMPUTER, 11(2), 87-93.

Eroglu, A., & Ozdemir, G. (2007). An economic order quantity model with defective items and shortages. International journal of production economics, 106(2), 544-549. https://doi.org/10.1016/j.ijpe.2006.06.015

Gujarati, D. N., & Porter, D. C. (2004). Basic Econometrics. McGraw-Hill Companies. New York, NY, USA,.

Handaya, Y. (2011). Infus Cairan Intravena (Macam-Macam Cairan Infus).

Heizer, J., Render, B., & Munson, C. (2014). Operations Management: Sustainability and Supply Chain Management, 12th global ed. England: Pearson Education Limited.

Huang, W., Kulkarni, V. G., & Swaminathan, J. M. (2003). Optimal EOQ for announced price increases in infinite horizon. Operations Research, 51(2), 336-339.

Khan, M., Jaber, M. Y., & Bonney, M. (2011). An economic order quantity (EOQ) for items with imperfect quality and inspection errors. International Journal of Production Economics, 133(1), 113-118. https://doi.org/10.1016/j.ijpe.2010.01.023

Lee, Y. S., & Tong, L. I. (2011). Forecasting time series using a methodology based on autoregressive integrated moving average and genetic programming. Knowledge-Based Systems, 24(1), 66-72. https://doi.org/10.1016/j.knosys.2010.07.006

Maddah, B., & Jaber, M. Y. (2008). Economic order quantity for items with imperfect quality: revisited. International Journal of Production Economics, 112(2), 808-815. https://doi.org/10.1016/j.ijpe.2007.07.003

Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (2008). Forecasting methods and applications. John wiley & sons.

Mora, M. M., Espinosa, M. R., & Delgado, M. R. (2018). Approach of processes for the distribution of economic resources in public university of ecuador. International research journal of management, IT and social sciences, 5(1), 25-35.

Muliarta, I. N. (2016). Medical waste and its management at wangaya hospital in Denpasar. International Research Journal of Management, IT and Social Sciences, 3(5), 94-102.

Nia, A. R., Far, M. H., & Niaki, S. T. A. (2014). A fuzzy vendor managed inventory of multi-item economic order quantity model under shortage: An ant colony optimization algorithm. International Journal of Production Economics, 155, 259-271. https://doi.org/10.1016/j.ijpe.2013.07.017

Rangkuti, F. (2013). Strategi promosi yang kreatif dan analisis kasus. Gramedia Pustaka Utama.

Roy, T., & Chaudhuri, K. S. (2007). A finite time-horizon deterministic EOQ model with stock-dependent demand, effects of inflation and time value of money with shortages in all cycles. Yugoslav Journal of Operations Research, 17(2), 195-207.

Satria, A. (2014). Penerapan Metode Economic Order Quantity (EOQ) Probabilistik Menggunakan Model (Q, R) pada Pengendalian dan Persediaan Obat Antinyeri Mefinal 500mg. Jurnal Mahasiswa Statistik, 2(2).

Taha, H. A. (997). Riset Operasi. Jakarta: Binarupa Aksara.

Taleizadeh, A. A., & Pentico, D. W. (2013). An economic order quantity model with a known price increase and partial backordering. European Journal of Operational Research, 228(3), 516-525. https://doi.org/10.1016/j.ejor.2013.02.014

Teng, J. T. (2009). A simple method to compute economic order quantities. European Journal of Operational Research, 198(1), 351-353. https://doi.org/10.1016/j.ejor.2008.05.019

Wei, W. W. (2006). Time series analysis: univariate and multivariate. Methods. Boston, MA: Pearson Addison Wesley.

Winston, W. L. (1994). Operation Research Applications and Algorithms, printed in the United States of America wadsworth.

Zhang, Q., Tsao, Y. C., & Chen, T. H. (2014). Economic order quantity under advance payment. Applied Mathematical Modelling, 38(24), 5910-5921. https://doi.org/10.1016/j.apm.2014.04.040



How to Cite

Prabhadika, I. P. Y., Tastrawati, N. K. T., Harini, L. P. I., & Dewinta, I. A. R. (2023). Optimization of infusion supply using the probabilistic economic order quantity (EOQ) method at Sanglah Center General Hospital. International Journal of Physics & Mathematics, 6(1), 1-6. https://doi.org/10.21744/ijpm.v6n1.2067