Titanium dioxide (TiO2) and gel-polymer solar cells

Structures and performance evaluation



  • Bahodir Bakhramov Namangan Engineering Technological Institute, Namangan, Uzbekistan
  • Muattar Tokhirjonova Namangan State University, Namangan, Uzbekistan


gel-polymer solar cells, impedance spectroscopy, IPCE, semiconductor-based, Titanium Dioxide (TiO2)


This research focuses on the study of semiconductor-based solar cells utilizing titanium dioxide (TiO2) and gel-polymer electrolytes. The technology for preparing the electrolytes used in these solar cells has been developed, encompassing both liquid and gel polymer electrolyte compositions. The electrochemical impedance method is employed to determine important parameters such as diffusion coefficient, mobility, and charge carrier concentration in both liquid and gel-polymer electrolytes. Experimental results are compared with theoretical calculations utilizing the electrochemical impedance spectroscopy graph. Moreover, the photon-to-current conversion efficiency of the semiconductor-based solar cells is determined using the Incident Photon to Current Conversion Efficiency (IPCE) method, covering a wavelength range of 300 nm to 900 nm.


Download data is not yet available.


Agarwala, S., Peh, C. K. N., & Ho, G. W. (2011). Investigation of ionic conductivity and long-term stability of a LiI and KI coupled diphenylamine quasi-solid-state dye-sensitized solar cell. ACS Applied Materials & Interfaces, 3(7), 2383-2391.

Aram, E., Ehsani, M., & Khonakdar, H. A. (2015). Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte. Thermochimica Acta, 615, 61-67.

Ates, M. (2011). Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces. Progress in Organic Coatings, 71(1), 1-10. https://doi.org/10.1016/j.porgcoat.2010.12.011

Azeez, F., & Fedkiw, P. S. (2010). Conductivity of libob-based electrolyte for lithium-ion batteries. Journal of power sources, 195(22), 7627-7633.Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells. Chem Rev 2010. –V.110. -P.6595–663.

Bandara, T. M. W. J., DeSilva, L. A., Ratnasekera, J. L., Hettiarachchi, K. H., Wijerathna, A. P., Thakurdesai, M., ... & Mellander, B. E. (2019). High efficiency dye-sensitized solar cell based on a novel gel polymer electrolyte containing RbI and tetrahexylammonium iodide (Hex4NI) salts and multi-layered photoelectrodes of TiO2 nanoparticles. Renewable and Sustainable Energy Reviews, 103, 282-290. https://doi.org/10.1016/j.rser.2018.12.052

Beadling, C., Neff, T. L., Heinrich, M. C., Rhodes, K., Thornton, M., Leamon, J., ... & Corless, C. L. (2013). Combining highly multiplexed PCR with semiconductor-based sequencing for rapid cancer genotyping. The Journal of Molecular Diagnostics, 15(2), 171-176. https://doi.org/10.1016/j.jmoldx.2012.09.003

Boukamp, B. A. (2004). Electrochemical impedance spectroscopy in solid state ionics: recent advances. Solid state ionics, 169(1-4), 65-73. https://doi.org/10.1016/j.ssi.2003.07.002

Careem, M. A., Aziz, M. F., & Buraidah, M. H. (2017). Boosting efficiencies of gel polymer electrolyte based dye sensitized solar cells using mixed cations. Materials Today: Proceedings, 4(4), 5092-5099. https://doi.org/10.1016/j.matpr.2017.05.013

Enea, O., Moser, J., & Grätzel, M. (1989). Achievement of incident photon to electric current conversion yields exceeding 80% in the spectral sensitization of titanium dioxide by coumarin. Journal of electroanalytical chemistry and interfacial electrochemistry, 259(1-2), 59-65. https://doi.org/10.1016/0022-0728(89)80038-5

Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of photochemistry and photobiology C: Photochemistry reviews, 1(1), 1-21. https://doi.org/10.1016/S1389-5567(00)00002-2

Huo, Z., Dai, S., Zhang, C., Kong, F., Fang, X., Guo, L., ... & Wang, K. (2008). Low molecular mass organogelator based gel electrolyte with effective charge transport property for long-term stable quasi-solid-state dye-sensitized solar cells. The Journal of Physical Chemistry B, 112(41), 12927-12933.

Krishna, K. G., Parne, S., Pothukanuri, N., Kathirvelu, V., Gandi, S., & Joshi, D. (2022). Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review. Sensors and Actuators A: Physical, 341, 113578. https://doi.org/10.1016/j.sna.2022.113578

Wang, L., Wang, Y., Schmuki, P., Kment, S., & Zboril, R. (2018). Nanostar morphology of plasmonic particles strongly enhances photoelectrochemical water splitting of TiO2 nanorods with superior incident photon-to-current conversion efficiency in visible/near-infrared region. Electrochimica Acta, 260, 212-220. https://doi.org/10.1016/j.electacta.2017.11.106

Zhang, W., & Rhim, J. W. (2022). Titanium dioxide (TiO2) for the manufacture of multifunctional active food packaging films. Food Packaging and Shelf Life, 31, 100806. https://doi.org/10.1016/j.fpsl.2021.100806



How to Cite

Bakhramov, B., & Tokhirjonova, M. (2023). Titanium dioxide (TiO2) and gel-polymer solar cells: Structures and performance evaluation. International Journal of Physics & Mathematics, 6(1), 16-21. https://doi.org/10.21744/ijpm.v6n1.2151