Validity of finite element method: Analysis of laminated composite decks plates subjected to in plane loading

  • Osama Mohammed Elmardi Suleiman Nile Valley University, Sudan, East Africa
  • Mahmoud Yassin Osman Kassala University, Sudan, East Africa
  • Tagelsir Hassan Omdurman Islamic University, Sudan, East Africa
Keywords: validity, plane loads, finite element, fortran program, laminated decks plates

Abstract

To verify the accuracy of the present technique, buckling loads are evaluated and validated with other works available in the literature. Further comparisons were carried out and compared with the results obtained by the ANSYS package and experimental results. The good agreement with available data demonstrates the reliability of the finite element method used.

Downloads

Download data is not yet available.

References

Aalami, B. (1972). Large deflection of elastic plates under patch loading. Journal of the Structural Division, 98(Proc Paper 9359).

Arauz, WMS, Gámez, MR, Pérez, AV, Castillo, GAL, & Alava, LAC (2017). The future of micro-grids in Ecuador. International Journal of Physical Sciences and Engineering, 1 (3), 1-8. https://doi.org/10.21744/ijpse.v1i3.53

Bouazza, M., Ouinas, D., Yazid, A., & Hamouine, A. (2012). Buckling of thin plates under uniaxial and biaxial compression. Journal of Materials Science and Engineering. A, 2(8A), 487.

Cassell, A. C., & Hobbs, R. E. (1976). Numerical stability of dynamic relaxation analysis of non‐linear structures. International Journal for numerical methods in engineering, 10(6), 1407-1410. https://doi.org/10.1002/nme.1620100620

Day, A. S. (1965). ’An introduction to dynamic relaxation’, the engineer, vol. 219.

Elmardi, O. M. (2014). Verification of dynamic relax-ation method in isotropic, orthotropic and laminated plates using small deflection theory. International Journal of Advanced Science and Technology, 72(4), 37-48.

Gamez, MR, Perez, AV, Sera, AS, & Ronquillo, ZM (2017). Renewable energy sources and local development. International Journal of Social Sciences and Humanities , 1 (2), 10-19. https://doi.org/10.29332/ijssh.v1n2.31

González, AED, Arauz, WMS, Gamez, MR, & Alava, LAC (2017). Photovoltaic energy to face an earthquake. International Journal of Physical Sciences and Engineering , 1 (3), 19-30. https://doi.org/10.21744/ijpse.v1i3.61

John, V. (1992). Introduction to engineering materials. Macmillan International Higher Education.

Mohammadi, M., Saidi, A. R., & Jomehzadeh, E. (2010). Levy solution for buckling analysis of functionally graded rectangular plates. Applied Composite Materials, 17(2), 81-93. https://doi.org/10.1007/s10443-009-9100-z

Mohammed Al-Sulha Sulaiman, Osama, and Mohammed Mohammed Elmardi Suleiman Khayal. "Nonlinear Analysis of Rectangular Laminated Plates Using Large Deflection Theory." (2017).

Osman, M. Y., & Suleiman, O. M. E. (2017). Buckling analysis of thin laminated composite plates using finite element method. International Journal of Engineering Research and Advanced Technology, 3.

Putcha, N. S., & Reddy, J. N. (1986). A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates.

Reddy, J. N. (2004). Mechanics of laminated composite plates and shells: theory and analysis. CRC press. https://doi.org/10.1201/b12409

Rushton, K. R. (1968). Large deflexion of variable-thickness plates. International Journal of mechanical sciences, 10(9), 723-735. https://doi.org/10.1016/0020-7403(68)90086-6

Setoodeh, A. R., & Karami, G. (2004). Static, free vibration and buckling analysis of anisotropic thick laminated composite plates on distributed and point elastic supports using a 3-D layer-wise FEM. Engineering structures, 26(2), 211-220.

Suleiman, O. M. E. (2016). Text Book on Dynamic Relaxation Method. Lap Lambert Academic Publishing, Germany, and ISBN:(978-3-659-94751-3).

Suleiman, O. M. E. (2017). Deflection of laminated composite plates using dynamic relaxation method. International Journal of Physical Sciences and Engineering, 1(1), 40-53. https://doi.org/10.21744/ijpse.v1i1.5

Turvey, G. J., & Osman, M. Y. (1989). Large deflection analysis of orthotropic Mindlin plates’. In Proceedings of the 12th energy resources technical conference and Exhibition, Houston, Texas (pp. 163-172).

Turvey, G. J., & Osman, M. Y. (1990). Elastic large deflection analysis of isotropic rectangular Mindlin plates. International journal of mechanical sciences, 32(4), 315-328. https://doi.org/10.1016/0020-7403(90)90096-2

Turvey, G. J., & Osman, M. Y. (1991). Large deflection effects in antisymmetric cross-ply laminated strips and plates. In Composite Structures (pp. 397-413). Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3662-4_31

Whitney, J. M., & Pagano, N. J. (1970). Shear deformation in heterogeneous anisotropic plates. Journal of applied mechanics, 37(4), 1031-1036.

Yang, P. C., Norris, C. H., & Stavsky, Y. (1966). Elastic wave propagation in heterogeneous plates. International Journal of solids and structures, 2(4), 665-684. https://doi.org/10.1016/0020-7683(66)90045-X

Yu, L. H., & Wang, C. Y. (2008). Buckling of rectangular plates on an elastic foundation using the Levy method. AIAA journal, 46(12), 3163-3167.

Published
2019-07-05
How to Cite
Suleiman, O. M. E., Osman, M. Y., & Hassan, T. (2019). Validity of finite element method: Analysis of laminated composite decks plates subjected to in plane loading. International Journal of Physics & Mathematics, 2(1), 1-10. https://doi.org/10.31295/ijpm.v2n1.53
Section
Articles