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In this paper H-infinity, a posteriori filter (HIPF) is converted to a continuous 

time H-infinity (HI) filter. Then, an observer is presented which uses the gain 

and the state error Gramian from the continuous time HI filter (CTHF). 

Asymptotic stability result of the observer’s error dynamics is derived using 

the Lyapunov energy functional. The performance of the CTHF is evaluated 

using numerical simulations carried out in MATLAB. These results establish 

the local stability of the underlying CTHF. This type of result is novel in the 

literature on HI theory of filters and the observers. 
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1.  Introduction 

 

Conventionally Kalman filter and its variants are used for estimation of states of a dynamic system from its input 

output data; especially using the noisy measurements (Raol, 2004). This process requires assumptions on the 

statistics of the process noise and measurement noise (Raol, 2017). Often such information is not available. H-

infinity filtering theory has provided an alternative paradigm in a deterministic framework for the estimator of the 

states of a dynamic system with minimum assumptions (Hassibi, 1996). Another alternative is the deterministic 

domain is the theory of observers. In this paper first HI based a posteriori filter is briefly described. Then, this 

discrete time filter (HIPF) is converted into continuous time HI based filter (CTHF). Interestingly, the resulting 

CTHF is similar to the HIPF with some additional terms. Then, an observer is presented that utilizes the gain and the 

state error Gramian from this CTHF. Using Lyapunov energy functional, asymptotic stability result of the observer’s 

error dynamics is derived. The performance of the CTHF is evaluated using MATLAB based numerical simulations. 

These results establish the asymptotic stability of the underlying CTHF. The result of the present study is a novel 

contribution to the literature of HI theory of filters and the observers. 
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2.  Materials and Methods 

 

The research has been based on the mathematical derivation of continuous time HI filter (CTHF). The basic HI 

filter is based on the minimization of the H-infinity norm and is a robust algorithm. Hence, H-infinity a posteriori 

filter (HIPF) is converted to a continuous time H-infinity (HI) filter. The continuous time development offers good 

flexibility to study analytical results. Then, an observer is proposed based on the CTHF, and asymptotic stability 

result of the observer’s error dynamics is derived using the Lyapunov energy functional. It is established that the 

error dynamics of the nonlinear observer with the gain and state error ‘covariance’ Gramian from the CTHF are 

locally asymptotically stable, and interestingly this result also establishes that the CTHF algorithm would be 

asymptotically stable. The latter is true because the asymptotic convergence result is based on the observer error 

dynamics that use the CTHF gain and the Gramian matrix from the CTHF. This is a novel interpretation in this 

paper. The performance of the CTHF is evaluated using numerical simulations carried out in MATLAB. 

 

 

3.  Results and Discussions 

 

3.1 H-Infinity a Posteriori Filter 

 

Consider a linear discrete time dynamic system  

𝑥(𝑘 + 1) = 𝜙𝑥(𝑘) + 𝐺𝑤(𝑘)        (1) 

𝑧(𝑘) = 𝐻𝑥(𝑘) + 𝑣(𝑘)         (2) 

 

In (1), and (2), the variables have usual meanings from control and system theory. The KF is a very well known and 

a popular filtering algorithm for estimation of the states, x(.), utilizing the measurements z(.). However, it requires 

statistical assumptions on the process noise w(.), and the measurement noise v(.). There is an alternative theory based 

on the H-infinity norm, that has resulted into several HI based filtering and control algorithms (Gelb, 1974). This HI 

filter is based on the minimization of the H-infinity norm, and it is supposed to be a robust algorithm. The HIPF 

algorithm is given here. First, the (covariance) state error Gramian (SEG) propagation is obtained as    

𝑃(𝑘 + 1) = 𝜙𝑃(𝑘)𝜙𝑇 + 𝜙𝑃(𝑘 − 1)𝜙𝑇 + 𝑄 − 𝜙𝑃(𝑘)[𝐻𝑇 𝐿𝑇]𝑅𝑒
−1 [

𝐻
𝐿

] 𝑃(𝑘)𝜙𝑇  (3) 

In (3), the composite measurement (covariance) Gramian matrix is obtained as 

𝑅𝑒 = [
𝐼 0
0 −𝛾2𝐼

] + [
𝐻
𝐿

] 𝑃(𝑘)[𝐻𝑇 𝐿𝑇]       (4)  

In (4), 𝛾 is a factor that specifies the upper bound on the energy (variance) gain from the input energies due to the 

disturbances (w(.), and v(.)), and the input error in the state initial condition to the output state error energy. The 

HIPF filter gain is obtained as  

𝐾 = 𝑃(𝑘 + 1)𝐻𝑇(𝐻𝑃(𝑘 + 1)𝐻𝑇 + 𝐼)−1       (5) 

The measurements/data update of the state estimate is given as  

�̂�(𝑘 + 1) = �̃�(𝑘) + 𝐾(𝑧(𝑘 + 1) − 𝐻�̃�(𝑘))      (6) 

In (6), the previous state estimate is obtained as �̃�(𝑘) = 𝜙�̂�(𝑘)    (7)  

In the context of HI/HIPF theory, all the variables are considered as generalized ‘random’ variables, and the 

associated ‘covariance’ like matrices are called Gramians.  

 

 

3.2 Continuous time H-Infinity filter (CTHF) 

 

The continuous time development has often a very good flexibility to study analytical results. Hence, the HIPF is 

converted here to continuous time filter. The continuous time linear dynamic system is given as 

 �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝑤(𝑡)         (8)  

𝑧(𝑡) = 𝐻𝑥(𝑡) + 𝑣(𝑡)         (9) 

In (8) and (9), the variables have usual meanings. The main idea here is to convert the HIPF to continuous time filter, 

and hence, we utilize the following substitutions, as a first order approximation (Raol et al., 2004): 

 𝜙(𝑘) = 𝐼 + 𝐴∆𝑡         (10) 
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𝑄(𝑘) = 𝐺𝑄𝐺𝑇∆𝑡 ; 𝑎𝑛𝑑 𝑅(𝑘) =
𝑅

∆𝑡
        (11) 

The equivalences of (10), and (11) are used to derive the continuous time HI filter from the discrete time HIPF. The 

approach is to use the differential equations of the HIPF and then observe their behavior as the discrete time step 

∆𝑡 → 0. 
First, the HIPF gain is handled as follows: 

1

∆𝑡
𝐾(𝑘) =

1

∆𝑡
𝑃(𝑘 + 1)𝐻𝑇(𝐻𝑃(𝑘 + 1)𝐻𝑇 + 𝐼)−1      (12) 

1

∆𝑡
𝐾(𝑘) = 𝑃(𝑘 + 1)𝐻𝑇(∆𝑡𝐻𝑃(𝑘 + 1)𝐻𝑇 + 𝐼∆𝑡)−1 

1

∆𝑡
𝐾(𝑘) = 𝑃(𝑘 + 1)𝐻𝑇(∆𝑡𝐻𝑃(𝑘 + 1)𝐻𝑇 + 𝑅)−1; 𝑅 = 𝐼∆𝑡     (13) 

In the limit as the ∆𝑡 → 0, the continuous time HI gain is obtained from (13) as 

lim
∆𝑡→0

1

∆𝑡
𝐾(𝑘) = lim

∆𝑡→0
𝑃(𝑘 + 1)𝐻𝑇(∆𝑡𝐻𝑃(𝑘 + 1)𝐻𝑇 + 𝑅)−1        (14) 

𝐾(𝑡) = lim
∆𝑡→0

1

∆𝑡
𝐾(𝑘) = 𝑃(𝑡)𝐻𝑇𝑅−1 ; wherein R(t) is given as 𝑅 = 𝐼∆𝑡   (15) 

Next, (10) is substituted in (3) to obtain 

 𝑃(𝑘 + 1) = (𝐼 + 𝐴∆𝑡)𝑃(𝑘)(𝐼 + 𝐴∆𝑡)𝑇 + 𝐺𝑄𝐺𝑇∆𝑡 − (𝐼 + 𝐴∆𝑡)𝑃(𝑘)[𝐻𝑇 𝐿𝑇]𝑅𝑒
−1 [

𝐻
𝐿

] 𝑃(𝑘)(𝐼 + 𝐴∆𝑡)𝑇  

  (16) 

Simplifying (16) at first stage one gets, neglecting higher product term,  

𝑃(𝑘 + 1) = 𝑃(𝑘) + 𝐴𝑃(𝑘)∆𝑡 + 𝑃(𝑘)𝐴𝑇∆𝑡 + 𝐺𝑄𝐺𝑇∆𝑡 − (𝐼 + 𝐴∆𝑡)[𝑃(𝑘)𝐻𝑇 𝑃(𝑘)𝐿𝑇]𝑅𝑒
−1 [

𝐻𝑃(𝑘)
𝐿𝑃(𝑘)

] (𝐼 + 𝐴∆𝑡)𝑇

 (17) 

Now, the gains are specified as 

𝐾 = 𝑃𝐻𝑇𝑅−1; 𝐻𝑃 = 𝑅𝑇𝐾𝑇          (18) 

𝐾𝑙 = 𝑃𝐿𝑇; 𝐿𝑃 = 𝐾𝑙
𝑇         (19) 

Substituting (18), and (19) in (17), one obtains   

𝑃(𝑘 + 1) = 𝑃(𝑘) + 𝐴𝑃(𝑘)∆𝑡 + 𝑃(𝑘)𝐴𝑇∆𝑡 + 𝐺𝑄𝐺𝑇∆𝑡 − (𝐼 + 𝐴∆𝑡)[𝐾𝑅 𝐾𝑙]𝑅𝑒
−1 [

𝑅𝑇𝐾𝑇

𝐾𝑙
𝑇 ] (𝐼 + 𝐴∆𝑡)𝑇 (20) 

Next, the central part of the last term is written as follows for simplicity 

𝑃𝑐𝑑 = [𝐾𝑅 𝐾𝑙]𝑅𝑒
−1 [

𝑅𝑇𝐾𝑇

𝐾𝑙
𝑇 ] (21) 

Substituting (21) in (20), and then simplifying one obtains, neglecting higher product term, 

𝑃(𝑘 + 1) = 𝑃(𝑘) + 𝐴𝑃(𝑘)∆𝑡 + 𝑃(𝑘)𝐴𝑇∆𝑡 + 𝐺𝑄𝐺𝑇∆𝑡 − (𝐼 + 𝐴∆𝑡)𝑃𝑐𝑑 (𝐼 + 𝐴∆𝑡)𝑇    (22) 

𝑃(𝑘 + 1) = 𝑃(𝑘) + 𝐴𝑃(𝑘)∆𝑡 + 𝑃(𝑘)𝐴𝑇∆𝑡 + 𝐺𝑄𝐺𝑇∆𝑡 − 𝑃𝑐𝑑 − 𝐴𝑃𝑐𝑑∆𝑡 − 𝑃𝑐𝑑𝐴𝑇∆𝑡   (23)  

Now, forming the differential from (23), and dividing both the sides by ∆𝑡 one obtains  

𝑃(𝑘+1)−𝑃(𝑘)

∆𝑡
=

1

∆𝑡
[{𝐴𝑃(𝑘) + 𝑃(𝑘)𝐴𝑇}∆𝑡 + 𝐺𝑄𝐺𝑇∆𝑡 − 𝑃𝑐𝑑 − {𝐴𝑃𝑐𝑑 + 𝑃𝑐𝑑𝐴𝑇}∆𝑡]  (24)  

 

Then, applying the limit ∆𝑡 → 0, one obtains 

lim
∆𝑡→0

𝑃(𝑘+1)−𝑃(𝑘)

∆𝑡
= lim

∆𝑡→0

1

∆𝑡
[{𝐴𝑃(𝑘) + 𝑃(𝑘)𝐴𝑇}∆𝑡 + 𝐺𝑄𝐺𝑇∆𝑡 − 𝑃𝑐𝑑 − {𝐴𝑃𝑐𝑑 + 𝑃𝑐𝑑𝐴𝑇}∆𝑡] (25) 
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�̇�(𝑡) = 𝐴𝑃(𝑘) + 𝑃(𝑘)𝐴𝑇 + 𝐺𝑄𝐺𝑇 − lim
∆𝑡→0

1

∆𝑡
𝑃𝑐𝑑 − 𝐴𝑃𝑐𝑑 − 𝑃𝑐𝑑𝐴𝑇    (26) 

Next, the limit of the fourth term is evaluated as follows: 

lim
∆𝑡→0

1

∆𝑡
𝑃𝑐𝑑 = lim

∆𝑡→0

1

∆𝑡
{[𝐾𝑅 𝐾𝑙]𝑅𝑒

−1 [
𝑅𝑇𝐾𝑇

𝐾𝑙
𝑇 ]

𝑇

}       (27) 

lim
∆𝑡→0

1

∆𝑡
𝑃𝑐𝑑 = [𝐾𝑅 𝐾𝑙] { lim

∆𝑡→0

1

∆𝑡
(𝑅𝑒)−1} [

𝑅𝑇𝐾𝑇

𝐾𝑙
𝑇 ]

𝑇

      (28) 

The limit of the bracketed term is evaluated as follows: 

lim
∆𝑡→0

1

∆𝑡
(𝑅𝑒)−1 = lim

∆𝑡→0

1

∆𝑡
{[

𝐼 0
0 −𝛾2𝐼

] + [
𝐻
𝐿

] 𝑃(𝑘)[𝐻𝑇 𝐿𝑇]}
−1

    (29) 

= lim
∆𝑡→0

{[
𝐼∆𝑡 0
0 −𝛾2𝐼∆𝑡

] + [
𝐻
𝐿

] 𝑃(𝑘)[𝐻𝑇 𝐿𝑇]∆𝑡}
−1

      (30)  

 

Evaluating the limit in (30), one obtains the following  

𝑅𝑒𝑐
−1 = [

𝐼∆𝑡 0
0 −𝛾2𝐼∆𝑡

]
−1

        (31) 

Substituting (31) in (28), one gets 

  𝑃𝑐 = [𝐾𝑅 𝐾𝑙](𝑅𝑒𝑐)−1 [
𝑅𝑇𝐾𝑇

𝐾𝑙
𝑇 ]

𝑇

       (32) 

 

Substituting (32) in (26) the final equation for the time propagation of the state error Gramian matrix is obtained 

as  

�̇�(𝑡) = 𝐴𝑃(𝑡) + 𝑃(𝑡)𝐴𝑇 + 𝐺𝑄𝐺𝑇 − 𝑃𝑐 − 𝐴𝑃𝑐𝑑 − 𝑃𝑐𝑑𝐴𝑇     (33) 

In a similar manner, one can obtain the continuous time state estimation equation as follows  

�̂�(𝑘 + 1) = 𝜙�̂�(𝑘) + 𝐾(𝑧(𝑘 + 1) − 𝐻𝜙�̂�(𝑘))       (34) 

  

Substituting (10) in (34), taking the limit as ∆𝑡 → 0 and simplifying one obtains  

�̇̂� = 𝐴�̂� + 𝑃𝐻𝑇𝑅−1(𝑧 − 𝐻�̂�)        (35)  

 

3.3 The Continuous Time HI Filter-CTHF 

 

Specify appropriate initial conditions: 𝑥(0), 𝑃(0), etc.  

The CTHF gain is given as  

𝐾(𝑡) = 𝑃(𝑡)𝐻𝑇𝑅−1;  𝑅 = 𝐼∆𝑡; 𝐾𝑙(𝑡) = 𝑃(𝑡)𝐿𝑇       (36) 

The continuous time composite Gramian matrix is given as    

𝑃𝑐 = [𝐾𝑅 𝐾𝑙](𝑅𝑒𝑐)−1 [
𝑅𝑇𝐾𝑇

𝐾𝑙
𝑇 ] ; 

𝑅𝑒𝑐
−1 = [

𝐼∆𝑡 0
0 −𝛾2𝐼∆𝑡

]
−1

        (37) 

The continuous time composite Gramian matrix with discrete measurement variance Gramian is given as    

𝑃𝑐𝑑 = [𝐾𝑅 𝐾𝑙]𝑅𝑒
−1 [

𝑅𝑇𝐾𝑇

𝐾𝑙
𝑇 ]

𝑇

; 

 𝑅𝑒 = [
𝐼 0
0 −𝛾2𝐼

] + [
𝐻
𝐿

] 𝑃(𝑘)[𝐻𝑇 𝐿𝑇]       (38) 
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It is important to note here that in the expression of Pcd(.), (38), the discrete measurement ‘variance’ Gramian matrix 

continues (as was in the discrete time HIPF); however, in matrix Pc(.), (37), the continuous time Gramian is used. 

The state error Gramian can be obtained by solving the following Riccati type matrix differential equation    

 

�̇�(𝑡) = 𝐴𝑃(𝑡) + 𝑃(𝑡)𝐴𝑇 + 𝐺𝑄𝐺𝑇 − 𝑃𝑐 − 𝐴𝑃𝑐𝑑 − 𝑃𝑐𝑑𝐴𝑇     (39) 

�̇̂� = 𝐴�̂� + 𝑃𝐻𝑇𝑅−1(𝑧 − 𝐻�̂�); 

�̇̂� = 𝐴�̂� + 𝐾(𝑡)(𝑧 − 𝐻�̂�)            (40) 

 

 

3.4 Observer based on Continuous time HI filter    

 

Next, a continuous time observer that uses the gain from the CTHF is studied, and the asymptotic stability result 

is derived. A nonlinear continuous time system is given as   

�̇� = 𝑓(𝑥, 𝑡)  (41) 

𝑧 = 𝐻𝑥  (42) 

A nonlinear observer for the system of (41) can be given as   

�̇̂�(𝑡) = 𝑓(�̂�(𝑡), 𝑡) + 𝐿𝑜(𝑡)(𝑦(𝑡) − �̂�(𝑡)) 

�̂�(𝑡) = 𝐻�̂�(𝑡)  (43) 

 

In (43), 𝐿𝑜(𝑡) is observer gain matrix of appropriate dimension, and is taken from the CTHF as   

𝐿𝑜(𝑡) = 𝑃(𝑡)𝐻𝑇𝑅−1  (44)  

The matrix P(t) is obtained as the solution of the observer Riccati type differential (RTD) equation which is also 

directly based on the CTHF:  

�̇�(𝑡) = 𝐴𝑃 + 𝑃𝐴𝑇 + 𝐺𝑄𝐺𝑇 − 𝑃𝑐 − 𝐴𝑃𝑐𝑑 − 𝑃𝑐𝑑𝐴𝑇  (45) 

Interestingly (45) also needs (37), and (38). The required Jacobian for (45) is obtained as 

𝐴(𝑡) =
𝛿𝑓(.)

𝛿�̂�(𝑡)
  (46) 

By subtracting (43) from (41), the following observer error dynamics are obtained  

�̇�(𝑡) = 𝐴(𝑡)𝑒(𝑡) − 𝐿𝑜(𝑡)𝐻(𝑥(𝑡) − �̂�(𝑡)) + 𝜙(. ) 

= 𝐴(𝑡)𝑒(𝑡) − 𝐿𝑜(𝑡)𝐻𝑒(𝑡) + 𝜙(. )  (47)    

In (47), new nonlinear function is   

𝜙(. ) = −𝐴(𝑡)𝑒(𝑡) + 𝑓(𝑥, 𝑡) − 𝑓(�̂�, 𝑡)  (48)   

In (48), the short forms for 𝑓 and 𝜙(. ) can be used for simplicity 

𝜙(. ) = 𝜙(𝑥(𝑡), �̂�(𝑡), 𝑡);   𝑓(𝑥, 𝑡) = 𝑓(𝑥(𝑡), 𝑡)     (49)
 

The state errors are given as 

𝑒(𝑡) = 𝑥(𝑡) − �̂�(𝑡)  (50)       

                                   

3.5 Asymptotic stability result of the observer error dynamics    

 

In order to study the local asymptotic behavior of the observer error dynamics of (47), it is necessary to consider 

the following conditions (Raff, 2006; Reif, 2017): 

1. The solution of the matrix RTD equation (45) should be bounded    
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     𝑝𝑙𝐼 ≤ 𝑃(𝑡) ≤ 𝑝𝑢𝐼  (51) 

In (51), 𝑝𝑙 , 𝑝𝑢 > 0 are constants (for, 𝑃(𝑡) is theoretically, positive definite and symmetrical matrix), and are 

the lower and upper bounds respectively.   

2. The nonlinearity (48) in the error dynamics should be bounded because the nonlinear functions should be 

bounded, 
‖𝜙(. )‖ ≤ 𝜌‖𝑥(𝑡) − �̂�(𝑡)‖2   (52) 

Then, the nonlinear observer error dynamics (47) are locally asymptotically stable, if basically the conditions 1 and 2 

are satisfied; of course some more conditions are required, that would evolve as the derivation proceeds further. 

First, the LE functional is considered to establish the asymptotic stability of the error dynamics (47) as  

 

𝑉(𝑡) = 𝑒𝑇(𝑡)𝑌(𝑡)𝑒(𝑡)  (53) 

In (53), Y(t) is the normalizing matrix and is considered as an information matrix given as 𝑌(𝑡) = 𝑃−1(𝑡). The 

matrix P(.) is called state error Gramian matrix, Y(.) as the information Gramian, and because the deterministic 

observer and the CTHF (in deterministic domain) are considered, the variables x(.), and y(.) are called the 

generalized ‘random’ variables. One can easily see that the LE functional is positive definite because of the condition 

1, the inequality of (51):      

 
1

𝑝𝑢
‖𝑒(𝑡)‖2 ≤ 𝑒𝑇(𝑡)𝑌(𝑡)𝑒(𝑡) ≤

1

𝑝𝑙
‖𝑒(𝑡)‖2  (54)  

The time derivative of the LE functional (53), under the constraints governed by error dynamics (47), gain (44), and 

the SEG (45) should be negative definite. This time derivative is obtained as  

 

�̇�(𝑡) = 𝑒𝑇(𝑡)�̇�(𝑡)𝑒(𝑡) + 𝑒𝑇(𝑡)𝑌(𝑡)�̇�(𝑡) + �̇�𝑇(𝑡)𝑌(𝑡)𝑒(𝑡)  (55) 

Since, �̇� = −𝑌�̇�𝑌, substituting this, and (45) in (55), the following expression is obtained 

�̇�(𝑡) = −𝑒𝑇(𝑡)𝑌(𝑡)[𝐴𝑃 + 𝑃𝐴𝑇 + 𝐺𝑄𝐺𝑇 − 𝑃𝑐 − 𝐴𝑃𝑐𝑑 − 𝑃𝑐𝑑𝐴𝑇]𝑌(𝑡)𝑒(𝑡) + 𝑒𝑇(𝑡)𝑌(𝑡)�̇�(𝑡) + �̇�𝑇(𝑡)𝑌(𝑡)𝑒(𝑡)   

  (56) 

Next, expression for error dynamics (47) is substituted in (56)  

�̇�(𝑡) = 𝐴(𝑡)𝑒(𝑡) − 𝐿𝑜(𝑡)𝐻𝑒(𝑡) + 𝜙(. )  (57)   

�̇�(𝑡) = −𝑒𝑇𝑌(𝑡)[𝐴𝑃 + 𝑃𝐴𝑇 + 𝐺𝑄𝐺𝑇 − 𝑃𝑐 − 𝐴𝑃𝑐𝑑 − 𝑃𝑐𝑑𝐴𝑇]𝑌(𝑡)𝑒(𝑡) + 𝑒𝑇𝑌(𝑡){𝐴𝑒(𝑡) − 𝐿𝑜(𝑡)𝐻𝑒(𝑡) + 𝜙(. )} +

{𝐴𝑒(𝑡) − 𝐿𝑜(𝑡)𝐻𝑒(𝑡) + 𝜙(. )}𝑇𝑌(𝑡)𝑒(𝑡)  

 

�̇�(𝑡) = −𝑒𝑇𝑌(𝑡)[𝐴𝑃 + 𝑃𝐴𝑇 + 𝐺𝑄𝐺𝑇 − 𝑃𝑐 − 𝐴𝑃𝑐𝑑 − 𝑃𝑐𝑑𝐴𝑇]𝑌(𝑡)𝑒(𝑡) + 𝑒𝑇𝑌(𝑡){𝐴𝑒(𝑡) − 𝐿𝑜𝐻𝑒(𝑡) + 𝜙(. )} +

{𝑒𝑇(𝑡)𝐴𝑇 − 𝑒𝑇(𝑡)𝐻𝑇𝐿𝑜
𝑇 + 𝜙𝑇(. )}𝑌(𝑡)𝑒(𝑡)  (58) 

   

Simplifying further and canceling certain common terms (without any approximations), one obtains 

�̇�(𝑡) = −𝑒𝑇(𝑡)𝑌𝐺𝑄𝐺𝑇𝑌𝑒(𝑡) + 𝑒𝑇(𝑡)𝑌𝑃𝑐𝑌𝑒(𝑡) + 𝑒𝑇(𝑡)𝑌𝐴𝑃𝑐𝑑𝑌𝑒(𝑡) + 𝑒𝑇(𝑡)𝑌𝑃𝑐𝑑𝐴𝑇𝑌𝑒(𝑡)+𝑒𝑇(𝑡)𝑌{𝐴𝑒(𝑡) −

𝐿𝑜𝐻𝑒(𝑡) + 𝜙(. )} + {𝑒𝑇(𝑡)𝐴𝑇 − 𝑒𝑇(𝑡)𝐻𝑇𝐿𝑜
𝑇 + 𝜙𝑇(. )}𝑌𝑒(𝑡)  (59) 

�̇�(𝑡) = −𝑒𝑇(𝑡)𝑌𝐺𝑄𝐺𝑇𝑌𝑒(𝑡) + 𝑒𝑇(𝑡)𝑌𝑃𝑐𝑌𝑒(𝑡) + 𝑒𝑇(𝑡)𝑌𝐴𝑃𝑐𝑑𝑌𝑒(𝑡) + 𝑒𝑇(𝑡)𝑌𝑃𝑐𝑑𝐴𝑇𝑌𝑒(𝑡)+𝑒𝑇(𝑡)𝑌𝐴𝑒(𝑡) −

𝑒𝑇(𝑡)𝑌𝐿𝑜𝐻𝑒(𝑡) + 𝑒𝑇(𝑡)𝑌𝜙(. ) + 𝑒𝑇(𝑡)𝐴𝑇𝑌𝑒(𝑡) − 𝑒𝑇(𝑡)𝐻𝑇𝐿𝑜
𝑇𝑌𝑒(𝑡) + 𝜙𝑇(. )𝑌𝑒(𝑡) (60) 

 

Substituting the CTHF gain from (44) in (60), one obtains 

�̇�(𝑡) = −𝑒𝑇(𝑡)𝑌𝐺𝑄𝐺𝑇𝑌𝑒(𝑡) + 𝑒𝑇(𝑡)𝑌𝑃𝑐𝑌𝑒(𝑡) + 𝑒𝑇(𝑡)𝑌𝐴𝑃𝑐𝑑𝑌𝑒(𝑡) + 𝑒𝑇(𝑡)𝑌𝑃𝑐𝑑𝐴𝑇𝑌𝑒(𝑡)+𝑒𝑇(𝑡)𝑌𝐴𝑒(𝑡) −

𝑒𝑇(𝑡)𝐻𝑇𝑅−1𝐻𝑒(𝑡) + 𝑒𝑇(𝑡)𝑌𝜙(. ) + 𝑒𝑇(𝑡)𝐴𝑇𝑌𝑒(𝑡) − 𝑒𝑇(𝑡)𝐻𝑇𝑅−1𝐻𝑒(𝑡) + 𝜙𝑇(. )𝑌𝑒(𝑡) (61) 
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Next, the following additional bounds are defined 

a)  It is assumed that  

‖𝑅−1‖ ≤ 1 𝑟⁄ ; ‖𝐻𝑇𝐻‖ ≤ ℎ2, (r and h are positive constants); ‖𝑒(𝑡)‖2 ≤ 𝜀2 (62) 

b)   ‖𝑃𝑐‖ ≤ 𝑏; ‖𝐴𝑃𝑐𝑑‖ = ‖𝑃𝑐𝑑𝐴𝑇‖ ≤ 𝑐; ‖𝐴‖ ≤ 𝑎  (63) 

 

After substituting these bounds one gets the following form of (61) in terms of the norms;   

�̇�(𝑡) = −
𝑞𝑙

𝑝𝑢
2 ‖𝑒(𝑡)‖2 +

𝑏

𝑝𝑢
2 ‖𝑒(𝑡)‖2 +

2𝑐

𝑝𝑢
2 ‖𝑒(𝑡)‖2 +

2𝑎

𝑝𝑢
‖𝑒(𝑡)‖2 +

2𝜌𝜀

𝑝𝑢
‖𝑒(𝑡)‖2 −

2ℎ2

𝑟
‖𝑒(𝑡)‖2 (64) 

 

In (64), 𝑞𝑙 is the smallest (positive) eigenvalue of the matrix GQGT, that is positive definite and symmetric. 

Combining certain terms in (64), one gets 

�̇�(𝑡) = − {
𝑞𝑙

𝑝𝑢
2 −

𝑏

𝑝𝑢
2 −

2𝑐

𝑝𝑢
2} ‖𝑒(𝑡)‖2 − {

2ℎ2

𝑟
−

2𝑎

𝑝𝑢
−

2𝜌𝜀

𝑝𝑢
} ‖𝑒(𝑡)‖2 (65) 

�̇�(𝑡) = − {[
𝑞𝑙

𝑝𝑢
2 −

𝑏

𝑝𝑢
2 −

2𝑐

𝑝𝑢
2] ; [

2ℎ2

𝑟
−

2𝑎

𝑝𝑢
−

2𝜌𝜀

𝑝𝑢
]} ‖𝑒(𝑡)‖2  (66) 

 

For ‖𝑒(𝑡)‖ ≤ 𝜀 = 𝑘, the following condition from (66) results  

�̇�(𝑡) = − {𝑞𝑙 > (𝑏 + 2𝑐); 𝑘 <
ℎ2𝑝𝑢−𝑎𝑟

𝑟𝜌
} ‖𝑒(𝑡)‖2  (67) 

Since, various constants and bounds (all defined earlier) appearing in the {.;.} of (67) are positive, then for the 

specified conditions on ql and k in (67), it is seen that the time derivative of the Lyapunov energy functional is locally 

negative definite as in (67). Hence, the error dynamics of the nonlinear observer with the gain and state error 

‘covariance’ Gramian from the continuous time HI filter, are locally asymptotically stable; and interestingly this 

result also establishes that the continuous time HI filtering (CTHF) algorithm would be asymptotically stable. The 

latter is true because the asymptotic convergence result is based on the observer error dynamics that use the CTHF 

gain and the Gramian matrix from the CTHF. This is a novel interpretation in this paper.     

 

 

3.6 Performance evaluation of the CTHF 

 

The CTHF algorithm is implemented in MATLAB and validated using simulated data. The state space model 

considered is given as 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢 + 𝑤 (68)  

The system matrices are  

𝐴 = [
0.06 −2.0
0.8 −0.8

] ; 𝐵 = [
−0.6
1.5

] (69) 

The measurement model is given as  

    𝑧(𝑡) = 𝐻𝑥(𝑡) + 𝑣 (70)  

The simulated data for 10 sec. are generated using the models, (69), (70), with a sampling interval of 0.05 sec. 

Appropriate additive process noise in states and measurement noise are used. Control input signal u(.) is a double 

that excites the modes of the system (69). The initial conditions for the states and the Gramians are appropriately 

chosen. The % fit errors (metrics) of the measurement residuals and the states are computed as PF/SE=100*cov(of 

measurements or state errors)/cov(of true or actual means. or state). If covariance measure is found to be ill-

conditioned, then ‘norm’ can be used instead. Also, the H-infinity norm is evaluated as      

   

 𝐻𝐼(𝑛𝑜𝑟𝑚) =
∑ (�̂�(𝑘)−𝑥(𝑘)𝑇)(�̂�(𝑘)−𝑥(𝑘))𝑁

𝐾=0

(�̂�0−𝑥𝑇)𝑃0(�̂�0−𝑥)+∑ 𝑤𝑇(𝑘)𝑁
𝑘=0 𝑤(𝑘)+∑ 𝑣𝑇(𝑘)𝑁

𝑘=0 𝑣(𝑘)
 (71) 
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The HI norm is the ratio of the output error (state estimate error) energy to the total input energies of the 

disturbances; this includes the error in the state initial condition and all the noise variances. The dynamic equations 

for simulation as well as filtering algorithm are solved by RK4 method of integration. The RTD equation (45) is 

solved by using the transition matrix method (Gelb, 1974). The performance metrics are given in Table 1; from 

where it can be seen that the CTHF algorithm performs very satisfactorily. Figure 1-3 show the CTHF performance; 

which shows very satisfactory trajectory matching and the state errors are within their theoretical bounds. Figure 3 

depicts the time history of the norm of P(t) which corroborates the asymptotic convergence of the observer as well as 

the continuous time H-Infinity filtering algorithm. Extensions of the presented analytical results to the applications in 

the domain of multi sensory data fusion can be easily pursued (Vershinin, 2002; Raol, 2015). 

 

Table 1  

Percentage performance metrics for CTHF algorithm 

 

HI norm PFE residuals 

0.0269 4.8968 

PSE state x1 PSE state x2 

0.2038 0.1213 

 

 

Figure 1: Time histories match (CTHF)/Residuals 

 

Figure 2: State errors with their bounds (CTHF) 
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Figure 3: Norm of P(.) showing the convergence 

 

 

4.  Conclusion 

 

H-infinity a posteriori filter (HIPF) has been converted to a continuous time H-infinity (HI) filter. Then, an 

observer is presented which uses the gain and the state error Gramian from the continuous time HI filter (CTHF). 

Asymptotic stability result of the observer’s error dynamics is derived using the Lyapunov energy functional. The 

performance of the CTHF is evaluated using numerical simulations carried out in MATLAB. These results establish 

the local stability of the underlying CTHF. This type of result is novel in the literature on HI theory of filters and the 

observers. Such studies have utilization in applications of the CTHF algorithm and observers in communications 

systems, wireless sensor networks, mechanical/aerospace engineering (aircraft trajectory & parameter estimation and 

target tracking), and robotics. 
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