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It was found that symmetric laminates are stiffer than the anti – symmetric 

one due to coupling between bending and stretching which decreases the 

buckling loads of symmetric laminates. The buckling load increases with 

increasing aspect ratio, and decreases with increase in modulus ratio. The 

buckling load will remain the same even when the lamination order is 

reversed. The buckling load increases with the mode number but at different 

rates depending on the type of end support. It is also observed that as the 

mode number increases, the plate needs additional support. 
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1.  Introduction 

 

The members and structures composed of laminated composite material are usually very thin, and hence more 

prone to buckling. Buckling phenomenon is critically dangerous to structural components because the buckling of 

composite plates usually occurs at a lower applied stress and generates large deformations. This led to a focus on the 

study of buckling behavior in composite materials. General introductions to the buckling of elastic structures and of 

laminated plates can be found in (Chai & Khong, 1993), (Narita & Fukushi, 1996), (Turvey & Marshal, 1995), 

(Singer et al., 1998, 2002), (Reddy, 2004), and (Berthelot, 1999). However, these available curves and data are 

restricted to idealized loading, namely, uniaxial or biaxial uniform compression. 
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Due to the importance of buckling considerations, there is an overwhelming number of investigations available in 

which corresponding stability problems are considered by a wide variety of analysis methods which may be of a 

closed – form analytical nature or may be sorted into the class of semi – analytical or purely numerical analysis 

method. 

Closed – form exact solutions for the buckling problem of rectangular composite plates are available only for 

limited combinations of boundary conditions and laminated schemes. These include cross – ply symmetric and angle 

– ply anti – symmetric rectangular laminates with at least two opposite edges simply supported, and similar plates 

with two opposite edges clamped but free to deflect (i.e. guided clamp) or with one edge simply supported and the 

opposite edge with a guided clamp. Most of the exact solutions discussed in the monographs of (Whitney, 1987), 

who developed an exact solution for critical buckling of solid rectangular orthotropic plates with all edges simply 

supported, and of (Reddy, 1997, 1984), ( Reddy & Phan, 1985), (Reddy & Khdeir, 1989) and (Leissa & Kang, 2002) 

and that of (Iyengar,1988). Bao et al., (1997), developed an exact solution for two edges simply supported and two 

edges clamped, and Robinson (1955), who developed an exact solution for the critical buckling stress of an 

orthotropic sandwich plate with all edges simply supported. 

For all other configurations, for which only approximated results are available, several semi – analytical and 

numerical techniques have been developed. The Rayleigh – Ritz method (Iyengar, 1988), the finite strip method 

(FSM) (Chai & Khong, 1993) and (Dawe & Wang, 1995), the element free Galerkin method (EFG) (Liu et al., 

2002), the differential quadrature technique (Bert & Malik, 1997), the moving least square differential quadrature 

method (Huang & Li, 2004) and the most extensively used finite element method (FEM) (Kim & Hoa, 1995), are the 

most common ones. 

The Kantorovich method (KM) (Shufrin et al., 2007), which is a different and in most cases advantageous semi – 

analytical method, combines a variation approach of closed – form solutions and an iterative procedure. The method 

assumes a solution in the form of a sum of products of functions in one direction and functions in the other direction. 

Then, by assuming the function in one direction, the variation problem of the plate reduces to a set of ordinary 

differential equations. In the case of buckling analysis, the variation problem reduces to an ordinary differential 

eigenvalue and Eigen function problem. The solution of the resulting problem is an approximate one, and its 

accuracy depends on the assumed functions in the first direction. The extended Kantorovich method (EKM), which 

was proposed by Kerr (1969), is the starting point for an iterative procedure, where the solution obtained in one 

direction is used as the assumed functions in the second direction. After repeating this process several times, 

convergence is obtained. The single term extended Kantorovich method was employed for a buckling analysis of 

rectangular plates by several researches. Eienberger & Alexandrov (2003), used the method for the buckling analysis 

of isotropic plates with variable thickness. Shufrin & Eienberger (2005), extended the solution to thick plates with 

constant and variable thickness using the first and higher order shear deformation theories. Ungbhakorn & 

Singhatanadgid (2006), extended the solution to buckling of symmetrically cross – ply laminated rectangular plates. 

The multi – term formulation of the extended Kantorovich approach to the simplest samples of rectangular isotropic 

plates was presented by Yuan & Jin (1998), this study showed that the additional terms in the expansion can be used 

in order to improve the solution. 

March & Smith (1945), found an approximate solution for all edges clamped. Also, Chang et al., (1962), 

developed approximate solution to the buckling of rectangular orthotropic sandwich plate with two edges simply 

supported and two edges clamped or all edges clamped using the March – Erickson method and an energy technique. 

Jiang et al., (1977), developed solutions for local buckling of rectangular orthotropic hat – stiffened plates with edges 

parallel to the stiffeners were simply supported or clamped and edges parallel to the stiffeners were free, and Smith 

(1990), presented solutions bounding the local buckling of hat stiffened plates by considering the section between 

stiffeners as simply supported or clamped plates. 

Many authors have used finite element method to predict accurate in – plane stress distribution which is then used 

to solve the buckling problem. Zienkiewicz (1977) and Cook (1981), have clearly presented an approach for finding 

the buckling strength of plates by first solving the linear elastic problem for a reference load and then the eigenvalue 

problem for the smallest eigenvalue which then multiplied by the reference load gives the critical buckling load of 

the structure. An excellent review of the development of plate finite elements during the past 35 years was presented 

by (Yang et al., 2000).  

Many buckling analyses of composite plates available in the literature are usually realized parallel with the 

vibration analyses, and are based on two – dimensional plate theories which may be classified as classical and shear 

deformable ones. Classical plate theories (CPT) do not take into account the shear deformation effects and over 

predict the critical buckling loads for thicker composite plates, and even for thin ones with a higher anisotropy. Most 



IRJEIS                  ISSN: 2454-2261    

 

Suleiman, O. M. E., Osman, M. Y., & Hassan, T. (2019). Stability of thin laminated decks plates under plane 

compressive loading. International Research Journal of Engineering, IT & Scientific Research, 5(2), 1-28. 

https://doi.org/10.21744/irjeis.v5n2.607 

3 

of the shear deformable plate theories are usually based on a displacement field assumption with five unknown 

displacement components. As three of these components corresponded to the ones in CPT, the additional ones are 

multiplied by a certain function of thickness coordinate and added to the displacements field of CPT in order to take 

into account the shear deformation effects. 

Taking these functions as linear and cubic forms leads to the so – called uniform or Mindlin shear deformable 

plate theory (USDPT) (Mindlin, 1951), and parabolic shear deformable plate theories (PSDPT) (Reddy, 1984) 

respectively. Different forms were also employed such as hyperbolic shear deformable plate theory (HSDPT) 

(Soladatos, 1992), and trigonometric or sine functions shear deformable plate theory (TSDPT) (Touratier, 1991). 

Since these types of shear deformation theories do not satisfy the continuity conditions among many layers of the 

composite structures, the zig – zag type of the plate theories introduced by Di Sciuva (1987) and Cho & Parmerter 

(1993), in order to consider interlaminar stress continuities. Recently, Karama et al., (2003), proposed a new 

exponential function {i.e. exponential shear deformable plate theory (ESDPT)} in the displacement field of the 

composite laminated structures for the representation of the shear stress distribution along the thickness of the 

composite structures and compared their result for static and dynamic problem of the composite beams with the sine 

model. 

Within the classical lamination theory, Jones (1973) presented a closed – form solution for the buckling problem 

of cross – ply laminated plates with simply supported boundary conditions. In the case of multi – layered plates 

subjected to various boundary conditions which are different from simply supported boundary conditions at all of 

their four edges, the governing equations of the buckling of the composite plates do not admit an exact solution, 

except for some special arrangements of laminated plates. Thus, for the solution of these types of problems, different 

analytical and / or numerical methods are employed by various researchers. Narita & Leissa (1989), applied the Ritz 

method with the displacement components assumed as the double series of trigonometric functions for the buckling 

problem of generally symmetric laminated composite rectangular plates with simply supported boundary conditions 

at all their edges. They investigated the critical buckling loads for five different types of loading conditions which are 

uniaxial compression (UA – C), biaxial compression (BA – C), biaxial compression – tension (BA – CT), and 

positive and negative shear loadings. 

The higher – order shear deformation theories can yield more accurate inter – laminate stress distributions. The 

introduction of cubic variation of displacement also avoids the need for shear correction displacement. To achieve a 

reliable analysis and safe design, the proposals and developments of models using higher order shear deformation 

theories have been considered. Lo et al., (1977), reviewed the pioneering work on the field and formulated a theory 

which accounts for the effects of transverse shear deformation, transverse strain and non – linear distribution of the 

in – plane displacements with respect to the thickness coordinate. Third – order theories have been proposed by 

Reddy (1993); Librescu (1975), Schmidt (1977); Murthy (1981); Levinson (1980); Seide (1980); Bhimaraddi et al., 

(1984); Mallikarjuna & Kant (1993); Kant & Pandya (1988); and Phan & Reddy (1985). Pioneering work and 

overviews in the field covering closed – form solutions and finite element models can be found in (Reddy, 1980); 

(Noor & Burton, 1990); ( Bert, 1984); ( Kant & Kommineni, 1984); and (Reddy and Robbins, 1994).  

For the buckling analysis of the cross – ply laminated plates subjected to simply supported boundary conditions 

at their opposite two edges and different boundary conditions at the remaining ones (Khdeir, 1989) and (Reddy & 

Khdeir, 1989), used a parabolic shear deformation theory and applied the state – space technique. Hadian & Nayfeh 

(1993), on the basis of the same theory and for the same type of problem, needed to modify the technique due to ill – 

conditioning problems encountered especially for thin and moderately thick plates. The buckling analyses of 

completely simply supported cross – ply laminated plates were presented by Fares & Zenkour (1999), who added a 

non – homogeneity coefficient in the material stiffnesses within various plate theories, and by Matsunaga (2000), 

who employed a global higher order plate theory. Gilat el al., (2001), also investigated the same type of problem on 

the basic of a global – local plate theory where the displacement field is composed of global and local contributions, 

such that the requirement of the continuity conditions and delamination effects can be incorporated into formulation.  

Many investigations have been reported for static and stability analysis of composite laminates using different 

traditional methods. Pagano (1970), developed an exact three – dimensional (3 – D) elasticity solution for static 

analysis of rectangular bi – directional composites and sandwich plates. (Noor, 1975) presented a solution for 

stability of multi – layered composite plates based on 3 – D elasticity theory by solving equations with finite 

difference method. Also, 3 – D elasticity solutions are presented by Gu & Chattopadhyay (2000), for the buckling of 

simply supported orthotropic composite plates. When the problem is reduced from a three – dimensional one (3 – D) 

to a two-dimensional case to contemplate more efficiently the computational analysis of plate composite structures, 



           ISSN: 2454-2261 

IRJEIS   Vol. 5 No. 2, March 2019, pages: 1~28 

4 

the displacement based theories and the corresponding finite element models receive the most attention (Reddy, 

1993). 

Bifurcation buckling of laminated structures has been investigated by many researchers without considering the 

flatness before buckling (Leissa, 1986). This point was first clarified for laminated composite plates for some 

boundary conditions and for some lamina configurations by (Leissa, 1986). Qatu & Leissa (1993), applied this result 

to identify true buckling behavior of composite plates.  

It is important to recognize that, with the advent of composite media, certain new material imperfections can be 

found in composite structures in addition to the better – known imperfections that one finds in metallic structures. 

Thus, broken fibers, delaminated regions, cracks in the matrix material, as well as holes, foreign inclusions and small 

voids constitute material and structural imperfections that can exist in composite structures. Imperfections have 

always existed and their effect on the structural response of a system has been very significant in many cases. These 

imperfections can be classified into two broad categories: initial geometrical imperfections and material or 

constructional imperfections. 

The first category includes geometrical imperfections in the structural configuration (such as a local out of 

roundness of a circular cylindrical shell, which makes the cylindrical shell non – circular; a small initial curvature in 

a flat plate or rod, which makes the structure non – flat, etc.), as well as imperfections in the loading mechanisms 

(such as load eccentricities; an axially loaded column is loaded at one end in such a manner that a bending moment 

exists at that end. The second class of imperfections is equally important, but has not received as much attentions as 

the first class; especially as far as its effect on the buckling response characteristics is concerned. For metallic 

materials, one can find several studies which deal with the effect of material imperfections on the fatigue life of the 

structural component. Moreover, there exist a number of investigations that deal with the effect of cut – outs and 

holes on the stress and deformation response of thin plates. Another material imperfection is the rigid inclusion. The 

effect of rigid inclusions on the stress field of the medium in the neighborhood of the inclusion has received limited 

attention. The interested reader is referred to the bibliography of Professor (Naruoka, 1981).  

In the present study, the composite media are assumed free of imperfections i.e. initial geometrical imperfections 

due to initial distortion of the structure, and material and / or constructional imperfections such as broken fibers, 

delaminated regions, cracks in the matrix material, foreign inclusions and small voids which are due to inconvenient 

selection of fibers / matrix materials and manufacturing defects. Therefore, the fibers and matrix are assumed 

perfectly bonded. 

 

Mathematical Formulations 

 

1)  Introduction  

The choice of the coordinate system is of critical importance for laminated plates. This is because plates with 

rectangular orthotropic could be set on rectangular, triangular, circular or other boundaries. Composite materials with 

rectangular orthotropic are the most popular, mainly because of their ease in design and manufacturing. The 

equations that follow are developed for materials with rectangular orthotropic. 

Figure 1 shows the geometry of a plate with rectangular orthotropic drawn in the Cartesian coordinates X, Y, and Z 

or 1, 2, and 3. The parameters used in such a plate are: (1) the length in the X-direction, (a); (2) the length in the Y – 

direction (i.e. breadth), (b); and (3) the length in the Z – direction (i.e. thickness), (h).  
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Figure 1.  The geometry of a laminated composite plate 

 

2)  Fundamental Equations of Elasticity 

Classical laminated plate theory (CLPT) is selected to formulate the problem. Consider a thin plate of length a, 

breadth b, and thickness h as shown in Figure 2(a), subjected to in – plane loads Rx, Ry and Rxy as shown in Figure 

2(b). The in – plane displacements 𝒖 (𝒙, 𝒚, 𝒛) and 𝒗 (𝒙, 𝒚, 𝒛) can be expressed in terms of the out of plane 

displacement 𝒘 (𝒙, 𝒚) as shown below: 

The displacements are: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢𝑜(𝑥, 𝑦) − 𝑧
𝜕𝑤

𝜕𝑥

𝑣(𝑥, 𝑦, 𝑧) = 𝑣𝑜(𝑥, 𝑦) − 𝑧
𝜕𝑤

𝜕𝑦

𝑤(𝑥, 𝑦, 𝑧) = 𝑤𝑜(𝑥, 𝑦)              }
 
 

 
 

                                            (1) 

 

Where 𝑢𝑜, 𝑣𝑜 and 𝑤𝑜 are mid – plane displacements in the direction of the 𝑥, 𝑦 and 𝑧 axes respectively; 𝑧 is the 

perpendicular distance from mid – plane to the layer plane. 

 

 
( a ) 

 

 



           ISSN: 2454-2261 

IRJEIS   Vol. 5 No. 2, March 2019, pages: 1~28 

6 

 
( b ) 

Figure 2.  A plate showing dimensions and deformations 

 

 
Figure 3. Geometry of an n-layered laminate 

 

The plate shown in Figure 2(a) is constructed of an arbitrary number of orthotropic layers bonded together as in 

Figure 3. 

 

The strains are: 

𝜖𝑥 =
𝜕𝑢𝑜
𝜕𝑥

− 𝑧
𝜕2𝑤

𝜕𝑥2
+
1

2
(
𝜕𝑤

𝜕𝑥
)
2

                     

𝜖𝑦 =
𝜕𝑣𝑜
𝜕𝑦

− 𝑧
𝜕2𝑤

𝜕𝑦2
+
1

2
(
𝜕𝑤

𝜕𝑦
)
2

                      

𝛾 =
𝜕𝑣𝑜
𝜕𝑥

+
𝜕𝑢𝑜
𝜕𝑦

− 2𝑧
𝜕2𝑤

𝜕𝑥𝜕𝑦
+ (

𝜕𝑤

𝜕𝑥
) (
𝜕𝑤

𝜕𝑦
)

 

}
  
 

  
 

                 (2) 

The virtual strains: 

𝛿𝜖𝑥 =
𝜕

𝜕𝑥
𝛿𝑢𝑜 − 𝑧

𝜕2

𝜕𝑥2
𝛿𝑤 +

𝜕𝑤

𝜕𝑥

𝜕

𝜕𝑥
𝛿𝑤             

𝛿𝜖𝑦 =
𝜕

𝜕𝑦
𝛿𝑣𝑜 − 𝑧

𝜕2

𝜕𝑦2
𝛿𝑤 +

𝜕𝑤

𝜕𝑦

𝜕

𝜕𝑦
𝛿𝑤                

𝛿𝛾 =
𝜕

𝜕𝑥
𝛿𝑣𝑜 +

𝜕

𝜕𝑦
𝛿𝑢𝑜 − 2𝑧

𝜕2

𝜕𝑥𝜕𝑦
𝛿𝑤                 

+
𝜕𝑤

𝜕𝑥

𝜕

𝜕𝑦
𝛿𝑤 +

𝜕

𝜕𝑥
𝛿𝑤

𝜕𝑤

𝜕𝑦
               

 

}
 
 
 
 

 
 
 
 

          (3) 
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The virtual strain energy: 

𝛿𝑈 = ∫ 𝛿𝜖𝑇𝜎𝑑𝑉
𝑉

                                                       (4) 

But, 

           𝜎 = 𝐶𝜖 
Where, 

         𝐶 = 𝐶𝑖𝑗(𝑖, 𝑗 = 1, 2, 6) 

∴  𝛿𝑈 = ∫ 𝛿𝜖𝑇 𝐶 𝛿𝜖 𝑑𝑉
𝑉

                                              (5) 

If we neglect the in-plane displacements 𝑢𝑜 and 𝑣𝑜 and considering only the linear terms in the strain – 

displacement equations, we write: 

𝛿𝜖 = −𝑧

|

|

𝜕2

𝜕𝑥2

𝜕2

𝜕𝑦2

2
𝜕2

𝜕𝑥𝜕𝑦

|

|

𝛿𝑤                                                    (6) 

 

 

 

2.  Materials and Methods 

 

The Numerical Method 

 

The finite element is used in this analysis as a numerical method to predict the buckling loads and shape modes of 

buckling of laminated rectangular plates (Osama Mohammed Elmardi Suleiman, March 2016, August 2016). In this 

method of analysis, four – noded type of elements is chosen. These elements are the four – noded bilinear rectangular 

elements of a plate. Each element has three degrees of freedom at each node. The degrees of freedom are the lateral 

displacement (𝑤), and the rotations (𝜙) and (𝜓) about the (𝑋) and (𝑌) axes respectively.  

For an 𝑛 noded element, and 3 degrees of freedom at each node. 

Now express 𝑤 in terms of the shape functions 𝑁 and noded displacements 𝑎𝑒, equation (6) can be written as: 

𝛿𝜖 = −𝑧𝐵𝛿𝑎𝑒                                                              (7) 
Where, 

𝐵𝑇 = [
𝜕2𝑁𝑖
𝜕𝑥2

𝜕2𝑁𝑖
𝜕𝑦2

2
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦

] 

and 

𝑁𝑖𝑎𝑖
𝑒 = [𝑤𝑖]      𝑖 = 1, 𝑛 

The stress – strain relation is: 

𝜎 = 𝐶 𝜖 

Where 𝐶 are the material properties which could be written as follows: 

𝐶 = [

𝐶11 𝐶12 𝐶16
𝐶12 𝐶22 𝐶26
𝐶16 𝐶26 𝐶66

] 

 

𝛿𝑈 = ∫ (𝐵𝛿𝑎𝑒)𝑇(𝐶𝑧2)𝐵𝑎𝑒𝑑𝑉
𝑉

 

Where 𝑉 denotes volume. 

𝛿𝑈 = 𝛿𝑎𝑒𝑇 ∫ 𝐵𝑇𝐷𝐵𝑎𝑒𝑑𝑥 𝑑𝑦
𝑉

= 𝛿𝑎𝑒𝑇  𝐾𝑒𝑎𝑒                (8) 
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Where 𝐷𝑖𝑗 = ∑ ∫ 𝐶𝑖𝑗𝑍
2 𝑑𝑍

𝑍𝑘
𝑍𝑘−1

𝑛
𝑘=1  is the bending stiffness, and 𝐾𝑒 is the element stiffness matrix which could be 

written as follows:  

𝐾𝑒 = ∫𝐵𝑇𝐷𝐵 𝑑𝑥𝑑𝑦                                               (9) 

The virtual work done by external forces can be expressed as follows: Refer to Figure 4. 

Denoting the nonlinear part of strain by 𝛿𝜖′ 

𝛿𝑊 =∬𝛿𝜖′𝑇𝜎′𝑑𝑉 = ∫𝛿𝜖′𝑇𝑁 𝑑𝑥𝑑𝑦                      (10) 

Where 

      𝑁𝑇 = [𝑁𝑥  𝑁𝑦 𝑁𝑥𝑦] = [𝜎𝑥 𝜎𝑦 𝜏] 𝑑𝑍 

𝛿𝜖′ = [

𝛿𝜖𝑥
𝛿𝜖𝑦
𝛿𝛾

] =

[
 
 
 
 
 
 
𝜕

𝜕𝑥
𝛿𝑤 0

0
𝜕

𝜕𝑦
𝛿𝑤

𝜕

𝜕𝑦
𝛿𝑤

𝜕

𝜕𝑥
𝛿𝑤
]
 
 
 
 
 
 

[
 
 
 
𝜕𝑤

𝜕𝑥
𝜕𝑤

𝜕𝑦]
 
 
 

                  (11) 

 
Figure 4. External forces acting on an element 

 

Hence, 

𝛿𝑊 =∬

[
 
 
 
𝜕𝑤

𝜕𝑥
𝜕𝑤

𝜕𝑦]
 
 
 
𝑇

[
 
 
 
 
𝜕

𝜕𝑥
𝛿𝑤 0

𝜕

𝜕𝑦
𝛿𝑤

0
𝜕

𝜕𝑦
𝛿𝑤

𝜕

𝜕𝑥
𝛿𝑤
]
 
 
 
 

[

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

] 𝑑𝑥 𝑑𝑦        (12) 

This can be written as: 

𝛿𝑊 =∬

[
 
 
 
𝜕

𝜕𝑥
𝛿𝑤

𝜕

𝜕𝑦
𝛿𝑤
]
 
 
 
𝑇

[
𝑁𝑥 𝑁𝑥𝑦
𝑁𝑥𝑦 𝑁𝑦

]

[
 
 
 
𝜕𝑤

𝜕𝑥
𝜕𝑤

𝜕𝑦]
 
 
 

𝑑𝑥 𝑑𝑦                   (13) 
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Now  𝑤 =  𝑁𝑖𝑎𝑖
𝑒 

𝛿𝑊 = 𝛿𝑎𝑒𝑇∬

[
 
 
 
𝜕𝑁𝑖
𝜕𝑥
𝜕𝑁𝑖
𝜕𝑦 ]
 
 
 
𝑇

[
𝑁𝑥 𝑁𝑥𝑦
𝑁𝑥𝑦 𝑁𝑦

]

[
 
 
 
𝜕𝑁𝑖
𝜕𝑥
𝜕𝑁𝑖
𝜕𝑦 ]
 
 
 

𝑎𝑒  𝑑𝑥 𝑑𝑦               (14) 

Substitute 𝑃𝑥 = −𝑁𝑥 , 𝑃𝑦 = −𝑁𝑦, 𝑃𝑥𝑦 = −𝑁𝑥𝑦  

𝛿𝑊 = −𝛿𝑎𝑒𝑇∬

[
 
 
 
𝜕𝑁𝑖
𝜕𝑥
𝜕𝑁𝑖
𝜕𝑦 ]
 
 
 
𝑇

[
𝑃𝑥 𝑃𝑥𝑦
𝑃𝑥𝑦 𝑃𝑦

]

[
 
 
 
𝜕𝑁𝑖
𝜕𝑥
𝜕𝑁𝑖
𝜕𝑦 ]
 
 
 

𝑎𝑒  𝑑𝑥 𝑑𝑦             (15) 

Therefore, equation (15) could be written in the following form: 

𝛿𝑊 = −𝛿𝑎𝑒𝑇𝐾𝐷𝑎𝑒                                                   (16) 
Where, 

𝐾𝐷 =∬

[
 
 
 
𝜕𝑁𝑖
𝜕𝑥
𝜕𝑁𝑖
𝜕𝑦 ]
 
 
 
𝑇

[
𝑃𝑥 𝑃𝑥𝑦
𝑃𝑥𝑦 𝑃𝑦

]

[
 
 
 
𝜕𝑁𝑖
𝜕𝑥
𝜕𝑁𝑖
𝜕𝑦 ]
 
 
 

 𝑑𝑥 𝑑𝑦 

𝐾𝐷 is the differential stiffness matrix known also as geometric stiffness matrix, initial stress matrix, and initial load 

matrix.  

The total energy:  

𝛿𝑈 +  𝛿𝑊 = 0                                                           (17) 
Since 𝛿𝑎𝑒 is an arbitrary displacement which is not zero, then 

𝐾𝑒𝑎𝑒 − 𝐾𝐷𝑎𝑒 = 0                                                    (18) 
Now let us compute the elements stiffness and the differential matrices. 

𝐾𝑒 = ∬𝐵𝑇𝐷𝐵 𝑑𝑥 𝑑𝑦 

𝐾𝑒 =∬

[
 
 
 
 
 
 
𝜕2𝑁𝑖
𝜕𝑥2

𝜕2𝑁𝑖
𝜕𝑦2

2
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦]

 
 
 
 
 
 
𝑇

[

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

]

[
 
 
 
 
 
 
𝜕2𝑁𝑖
𝜕𝑥2

𝜕2𝑁𝑖
𝜕𝑦2

2
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦]

 
 
 
 
 
 

𝑑𝑥 𝑑𝑦  

The elements stiffness matrix can be expressed as follows: 

𝐾𝑖𝑗
𝑒 =∬[𝐷11

𝜕2𝑁𝑖
𝜕𝑥2

𝜕2𝑁𝑗

𝜕𝑥2
+ 𝐷12 (

𝜕2𝑁𝑖
𝜕𝑦2

𝜕2𝑁𝑗

𝜕𝑥2
+
𝜕2𝑁𝑖
𝜕𝑥2

𝜕2𝑁𝑗

𝜕𝑦2
) + 2𝐷16 (

𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦

𝜕2𝑁𝑗

𝜕𝑥2
+
𝜕2𝑁𝑖
𝜕𝑥2

𝜕2𝑁𝑗

𝜕𝑥𝜕𝑦
)+𝐷22

𝜕2𝑁𝑖
𝜕𝑦2

𝜕2𝑁𝑗

𝜕𝑦2

+ 2𝐷26 (
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦

𝜕2𝑁𝑗

𝜕𝑦2
+
𝜕2𝑁𝑖
𝜕𝑦2

𝜕2𝑁𝑗

𝜕𝑥𝜕𝑦
)+4𝐷66

𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦

𝜕2𝑁𝑗

𝜕𝑥𝜕𝑦
] 𝑑𝑥 𝑑𝑦  (19) 

The elements differential stiffness matrix can be expressed as follows; 

𝐾𝑖𝑗
𝐷 =∬[𝑃𝑥

𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
+ 𝑃𝑥𝑦 (

𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑗

𝜕𝑥
+
𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑗

𝜕𝑦
)+𝑃𝑦

𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑗

𝜕𝑦
] 𝑑𝑥𝑑𝑦         (20) 

 

 

 

 

 

 

 

 



           ISSN: 2454-2261 

IRJEIS   Vol. 5 No. 2, March 2019, pages: 1~28 

10 

The shape local co – ordinate for a 4 – noded element is shown below in Figure 5. 

 
Figure 5.  A four noded element with local and global co – ordinates 

 

The shape functions for the 4 – noded element expressed in global co – ordinates (𝑥, 𝑦) are as follows: 

𝑤 = 𝑁1𝑤1 +𝑁2𝜙1 + 𝑁3𝜓1 + 𝑁4𝑤2 +𝑁5𝜙2 + 𝑁6𝜓2 

+𝑁7𝑤3 + 𝑁8𝜙3 +𝑁9𝜓3 + 𝑁10𝑤4 + 𝑁11𝜙4 + 𝑁12𝜓4 

Where, 

𝜙 =
𝜕𝑤

𝜕𝑥
 ,       𝜓 =

𝜕𝑤

𝜕𝑦
 

The shape functions in local co – ordinates are as follows: 

𝑁𝑖 = 𝑎𝑖1 + 𝑎𝑖2𝑟 + 𝑎𝑖3𝑠 + 𝑎𝑖4𝑟
2 + 𝑎𝑖5𝑟𝑠 + 𝑎𝑖6𝑠

2 + 𝑎𝑖7𝑟
3 + 𝑎𝑖8𝑟

2𝑠 + 𝑎𝑖9𝑟𝑠
2 

+𝑎𝑖10𝑠
3 + 𝑎𝑖11𝑟

3𝑠 + 𝑎𝑖12𝑟𝑠
3 

𝑁𝑗 = 𝑎𝑗1 + 𝑎𝑗2𝑟 + 𝑎𝑗3𝑠 + 𝑎𝑗4𝑟
2 + 𝑎𝑗5𝑟𝑠 + 𝑎𝑗6𝑠

2 + 𝑎𝑗7𝑟
3 + 𝑎𝑗8𝑟

2𝑠 + 𝑎𝑗9𝑟𝑠
2 

+𝑎𝑗10𝑠
3 + 𝑎𝑗11𝑟

3𝑠 + 𝑎𝑗12𝑟𝑠
3 

The integrals of the shape functions in local co – ordinates are as follows: 

𝑞1 =∬
𝜕2𝑁𝑖
𝜕𝑟2

𝜕2𝑁𝑗

𝜕𝑟2
 𝑑𝑟 𝑑𝑠 = 16 [𝑎𝑖4𝑎𝑗4 + 3𝑎𝑖7𝑎𝑗7 +

1

3
𝑎𝑖8𝑎𝑗8 + 𝑎𝑖11𝑎𝑗11] 

𝑞2 =∬
𝜕2𝑁𝑖
𝜕𝑠2

𝜕2𝑁𝑗

𝜕𝑠2
 𝑑𝑟 𝑑𝑠 = 16 [𝑎𝑖6𝑎𝑗6 +

1

3
𝑎𝑖9𝑎𝑗9 + 3𝑎𝑖10𝑎𝑗10 + 𝑎𝑖12𝑎𝑗12] 

𝑞3 =∬
𝜕2𝑁𝑖
𝜕𝑟2

𝜕2𝑁𝑗

𝜕𝑠2
 𝑑𝑟 𝑑𝑠 = 16[𝑎𝑖4𝑎𝑗6 + 𝑎𝑖7𝑎𝑗9 + 𝑎𝑖8𝑎𝑗10 + 𝑎𝑖11𝑎𝑗12] 

𝑞4 =∬
𝜕2𝑁𝑖
𝜕𝑠2

𝜕2𝑁𝑗

𝜕𝑟2
 𝑑𝑟 𝑑𝑠 = 16[𝑎𝑖6𝑎𝑗4 + 𝑎𝑖9𝑎𝑗7 + 𝑎𝑖10𝑎𝑗8 + 𝑎𝑖12𝑎𝑗11] 

𝑞5 =∬
𝜕2𝑁𝑖
𝜕𝑟2

𝜕2𝑁𝑗

𝜕𝑟𝜕𝑠
 𝑑𝑟 𝑑𝑠 = 8[𝑎𝑖4𝑎𝑗5 + 𝑎𝑖4𝑎𝑗11 + 2𝑎𝑖7𝑎𝑗8 + 𝑎𝑖4𝑎𝑗12 

+
2

3
𝑎𝑖8𝑎𝑗9] 

𝑞6 =∬
𝜕2𝑁𝑖
𝜕𝑟𝜕𝑠

𝜕2𝑁𝑗

𝜕𝑟2
 𝑑𝑟 𝑑𝑠 = 8 [𝑎𝑖5𝑎𝑗4 + 2𝑎𝑖8𝑎𝑗7 + 𝑎𝑖11𝑎𝑗4 +

2

3
𝑎𝑖9𝑎𝑗8 

+𝑎𝑖12𝑎𝑗4] 

𝑞7 =∬
𝜕2𝑁𝑖
𝜕𝑠2

𝜕2𝑁𝑗

𝜕𝑟𝜕𝑠
 𝑑𝑟 𝑑𝑠 = 8 [𝑎𝑖6𝑎𝑗5 + 𝑎𝑖6𝑎𝑗11 +

2

3
𝑎𝑖9𝑎𝑗8] 

𝑞8 =∬
𝜕2𝑁𝑖
𝜕𝑟𝜕𝑠

𝜕2𝑁𝑗

𝜕𝑠2
 𝑑𝑟 𝑑𝑠 = 8 [𝑎𝑖5𝑎𝑗6 +

2

3
𝑎𝑖8𝑎𝑗9 + 𝑎𝑖11𝑎𝑗6] 
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𝑞9 =∬
𝜕2𝑁𝑖
𝜕𝑟𝜕𝑠

𝜕2𝑁𝑗

𝜕𝑟𝜕𝑠
 𝑑𝑟 𝑑𝑠 = 4 [𝑎𝑖5𝑎𝑗5 + 𝑎𝑖5𝑎𝑗11 +

4

3
𝑎𝑖8𝑎𝑗8 + 𝑎𝑖5𝑎𝑗12 

+
4

3
𝑎𝑖9𝑎𝑗9 + 𝑎𝑖11𝑎𝑗12 + 𝑎𝑖12𝑎𝑗11 +

9

5
𝑎𝑖12𝑎𝑗12] 

𝑞10 =∬
𝜕𝑁𝑖
𝜕𝑟

𝜕𝑁𝑗

𝜕𝑟
 𝑑𝑟 𝑑𝑠 = 4 [𝑎𝑖2𝑎𝑗2 +

1

3
(3𝑎𝑖2𝑎𝑗7 + 4𝑎𝑖4𝑎𝑗4 + 3𝑎𝑖7𝑎𝑗2 

+𝑎𝑖7𝑎𝑗9 + 𝑎𝑖5𝑎𝑗5 + 𝑎𝑖9𝑎𝑗2 + 𝑎𝑖5𝑎𝑗11 + 𝑎𝑖7𝑎𝑗9 +
4

3
𝑎𝑖8𝑎𝑗8 + 𝑎𝑖9𝑎𝑗7 

𝑎𝑖11𝑎𝑗5) +
1

5
(𝑎𝑖5𝑎𝑗12 + 𝑎𝑖9𝑎𝑗9 + 𝑎𝑖12𝑎𝑗5 + 9𝑎𝑖7𝑎𝑗7 + 3𝑎𝑖11𝑎𝑗11 + 𝑎𝑖11𝑎𝑗12 

+𝑎𝑖12𝑎𝑗11) +
1

7
𝑎𝑖12𝑎𝑗12] 

𝑞11 =∬
𝜕𝑁𝑖
𝜕𝑠

𝜕𝑁𝑗

𝜕𝑠
 𝑑𝑟 𝑑𝑠 = 4 [𝑎𝑖3𝑎𝑗3 +

1

3
(𝑎𝑖3𝑎𝑗8 + 𝑎𝑖5𝑎𝑗5 + 𝑎𝑖8𝑎𝑗3 

+3𝑎𝑖3𝑎𝑗10 + 4𝑎𝑖6𝑎𝑗6 + 3𝑎𝑖10𝑎𝑗3 + 𝑎𝑖5𝑎𝑗12 + 𝑎𝑖8𝑎𝑗10 +
4

3
𝑎𝑖9𝑎𝑗9 + 𝑎𝑖10𝑎𝑗8 

+𝑎𝑖12𝑎𝑗5) +
1

5
(𝑎𝑖5𝑎𝑗11 + 𝑎𝑖8𝑎𝑗8 + 𝑎𝑖11𝑎𝑗5 + 9𝑎𝑖10𝑎𝑗10 + 𝑎𝑖11𝑎𝑗12 + 𝑎𝑖12𝑎𝑗11 

+3𝑎𝑖2𝑎𝑗12) +
1

7
𝑎𝑖11𝑎𝑗11] 

𝑞12 =∬
𝜕𝑁𝑖
𝜕𝑟

𝜕𝑁𝑗

𝜕𝑠
 𝑑𝑟 𝑑𝑠 = 4 [𝑎𝑖2𝑎𝑗3 +

1

3
(𝑎𝑖2𝑎𝑗8 + 2𝑎𝑖4𝑎𝑗5 + 3𝑎𝑖7𝑎𝑗8 

+3𝑎𝑖2𝑎𝑗10 + 2𝑎𝑖5𝑎𝑗6 + 𝑎𝑖9𝑎𝑗3 + 2𝑎𝑖4𝑎𝑗12 + 3𝑎𝑖7𝑎𝑗10 +
4

3
𝑎𝑖8𝑎𝑗9 +

1

3
𝑎𝑖9𝑎𝑗8 

+2𝑎𝑖11𝑎𝑗6)] 

𝑞13 =∬
𝜕𝑁𝑖
𝜕𝑠

𝜕𝑁𝑗

𝜕𝑟
 𝑑𝑟 𝑑𝑠 = 4 [𝑎𝑖3𝑎𝑗2 +

1

3
(3𝑎𝑖3𝑎𝑗7 + 2𝑎𝑖5𝑎𝑗4 + 𝑎𝑖8𝑎𝑗2 

+𝑎𝑖3𝑎𝑗9 + 2𝑎𝑖6𝑎𝑗5 + 3𝑎𝑖10𝑎𝑗2 + 2𝑎𝑖6𝑎𝑗11 +
1

3
𝑎𝑖8𝑎𝑗9 +

4

3
𝑎𝑖9𝑎𝑗8 + 3𝑎𝑖10𝑎𝑗7 

+2𝑎𝑖12𝑎𝑗4) +
1

5
(2𝑎𝑖6𝑎𝑗12 + 3𝑎𝑖10𝑎𝑗9 + 3𝑎𝑖8𝑎𝑗7 + 2𝑎𝑖11𝑎𝑗4)] 

The values of the integrals are converted from local co – ordinate (𝑟, 𝑠) to global co – ordinates. 

 

The integrals of the shape functions in global co – ordinates are as follows: 

𝑟1 =∬
𝜕2𝑁𝑖
𝜕𝑥2

𝜕𝑁𝑗

𝜕𝑥2
 𝑑𝑥 𝑑𝑦 = (

4ℎ𝑦

ℎ𝑥
3
) 𝑞1 =

4𝑛3𝑏

𝑚𝑎3
𝑞1 

𝑟2 =∬
𝜕2𝑁𝑖
𝜕𝑦2

𝜕2𝑁𝑗

𝜕𝑦2
 𝑑𝑥 𝑑𝑦 = (

4ℎ𝑥
ℎ𝑦
3
) 𝑞2 =

4𝑎𝑚3

𝑛𝑏3
𝑞2 

𝑟3 =∬
𝜕2𝑁𝑖
𝜕𝑥2

𝜕2𝑁𝑗

𝜕𝑦2
 𝑑𝑥 𝑑𝑦 = (

4

ℎ𝑦ℎ𝑥
) 𝑞3 =

4𝑚𝑛

𝑎𝑏
𝑞3 

𝑟4 =∬
𝜕2𝑁𝑖
𝜕𝑦2

𝜕2𝑁𝑗

𝜕𝑥2
 𝑑𝑥 𝑑𝑦 = (

4

ℎ𝑦ℎ𝑥
)𝑞4 =

4𝑚𝑛

𝑎𝑏
𝑞4 

𝑟5 =∬
𝜕2𝑁𝑖
𝜕𝑥2

𝜕2𝑁𝑗

𝜕𝑥𝜕𝑦
 𝑑𝑥 𝑑𝑦 = (

4

ℎ𝑥
2
) 𝑞5 =

4𝑛2

𝑎2
𝑞5 

𝑟6 =∬
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦

𝜕2𝑁𝑗

𝜕𝑥2
 𝑑𝑥 𝑑𝑦 = (

4

ℎ𝑥
2
) 𝑞6 =

4𝑛2

𝑎2
𝑞6 
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𝑟7 =∬
𝜕2𝑁𝑖
𝜕𝑦2

𝜕2𝑁𝑗

𝜕𝑥𝜕𝑦
 𝑑𝑥 𝑑𝑦 = (

4

ℎ𝑦
2
) 𝑞7 =

4𝑚2

𝑎2
𝑞7 

𝑟8 =∬
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦

𝜕2𝑁𝑗

𝜕𝑦2
 𝑑𝑥 𝑑𝑦 = (

4

ℎ𝑦
2
) 𝑞8 =

4𝑚2

𝑏2
𝑞8 

𝑟9 =∬
𝜕2𝑁𝑖
𝜕𝑥𝜕𝑦

𝜕2𝑁𝑗

𝜕𝑥𝜕𝑦
 𝑑𝑥 𝑑𝑦 = (

4

ℎ𝑦ℎ𝑥
)𝑞9 =

4𝑚𝑛

𝑎𝑏
𝑞9 

𝑟10 =∬
𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
 𝑑𝑥 𝑑𝑦 = (

ℎ𝑦

ℎ𝑥
)𝑞10 =

𝑏𝑛

𝑎𝑚
𝑞10 

𝑟11 =∬
𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑗

𝜕𝑦
 𝑑𝑥 𝑑𝑦 = (

ℎ𝑥
ℎ𝑦
)𝑞11 =

𝑎𝑚

𝑏𝑛
𝑞11 

𝑟12 =∬
𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑗

𝜕𝑦
 𝑑𝑥 𝑑𝑦 = 𝑞12 

𝑟13 =∬
𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑗

𝜕𝑥
 𝑑𝑥 𝑑𝑦 = 𝑞13  

In the previous equations ℎ𝑥 =
𝑎

𝑛
 and ℎ𝑦 =

𝑏

𝑚
 where 𝑎 and 𝑏 are the lengths of the plate along the 𝑥 – and 𝑦 – axis 

respectively. 𝑛 and 𝑚 are the number of elements in the 𝑥 – and 𝑦 – directions respectively.  

 

The elements of the stiffness matrix and the differential matrix can be written as follows: 

𝐾𝑖𝑗 = 𝐷11𝑟1 + 𝐷12𝑟4 + 2𝐷16𝑟3 + 𝐷12𝑟3 + 𝐷22𝑟2 + 2𝐷66𝑟8 + 2𝐷16𝑟5 + 2𝐷26𝑟7 + 4𝐷66𝑟9 

𝐾𝑖𝑗
𝐷 = 𝑃𝑥𝑟10 + 𝑃𝑥𝑦(𝑟12 + 𝑟13) + 𝑃𝑦𝑟11 

 

or in the non – dimensional form: 

𝐾𝑖𝑗 =
4𝑛3

𝑚
(
𝑏

𝑎
) �̅�11𝑞1 + 4𝑚𝑛 (

𝑎

𝑏
) �̅�12𝑞4 + 4𝑛

2�̅�16𝑞6 + 4𝑚𝑛 (
𝑎

𝑏
) �̅�12𝑞3 

+
4𝑚3

𝑛
(
𝑎

𝑏
) �̅�22𝑞2 + 4𝑚

2 (
𝑎

𝑏
)
2

�̅�26𝑞8 + 4𝑛
2�̅�16𝑞5 + 4𝑚

2 (
𝑎

𝑏
)
2

�̅�26𝑞7 

+4𝑚𝑛 (
𝑎

𝑏
) �̅�66𝑞9 

𝐾𝑖𝑗
𝐷 = �̅�𝑥

𝑛

𝑚
(
𝑏

𝑎
) 𝑞10 + �̅�𝑥𝑦(𝑞12 + 𝑞13) + �̅�𝑦

𝑚

𝑛
(
𝑎

𝑏
) 𝑞11 

where 

�̅�𝑖𝑗 = (
1

𝐸1ℎ
3
)𝐷𝑖𝑗  ,      �̅�𝑖 = (

𝑎

𝐸1ℎ
3
) 𝑃𝑖  

Also 

�̅� = (
1

ℎ
)𝑤, �̅� = (

ℎ

𝑎
)𝜙, �̅� = (

ℎ

𝑎
)𝜓, �̅� = 𝑏/𝑎 

 

The transformed stiffnesses are as follows: 

 

𝐶11 = 𝐶11
′ 𝑐4 + 2𝑐2𝑠2(𝐶11

′ + 2𝐶66
′ ) + 𝐶22

′ 𝑠4 

𝐶12 = 𝑐2𝑠2(𝐶11
′ + 𝐶22

′ + 4𝐶66
′ ) + 𝐶12

′ (𝑐4 + 𝑠4) 

𝐶16 = 𝑐𝑠[𝐶11
′ 𝑐4 + 𝐶22

′ 𝑠2 − (𝐶12
′ + 2𝐶66

′ )(𝑐2 − 𝑠2)] 

𝐶22 = 𝐶11
′ 𝑠4 + 2𝑐2𝑠2(𝐶12

′ + 2𝐶66
′ ) + 𝐶22

′ 𝑐4 
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𝐶26 = 𝑐𝑠[𝐶11
′ 𝑠2 − 𝐶22

′ 𝑐2 − (𝐶12
′ + 2𝐶66

′ )(𝑐2 − 𝑠2)] 

𝐶66 = (𝐶11
′ + 𝐶22

′ − 2𝐶12
′ )𝑐2𝑠2 + 𝐶66

′ (𝑐2 − 𝑠2)2 

Where 

𝐶11
′ =

𝐸1
1 − 𝑣12𝑣21

 

𝐶12
′ =

𝑣21 𝐸1
1 − 𝑣12𝑣21

=
𝑣12 𝐸1

1 − 𝑣12𝑣21
 

𝐶22
′ =

𝐸2
1 − 𝑣12𝑣21

 

𝐶44
′ = 𝐺23 ,  𝐶55

′ = 𝐺13     and  𝐶66
′ = 𝐺12 

 

𝐸1 and 𝐸2 are the elastic moduli in the direction of the fiber and the transverse directions respectively, 𝑣 is the 

Poisson's ratio. 𝐺12, 𝐺13, and 𝐺23 are the shear moduli in the 𝑥 –  𝑦 plane, 𝑦 –  𝑧 plane, and 𝑥 –  𝑧 plane respectively, 

and the subscripts 1 and 2 refer to the direction of fiber and the transverse direction respectively 

 

 

3.  Results and Discussions 

 

Numerical Results 

 

3.1 Effect of Lamination Scheme 

In the present analysis the lamination scheme of plates is supposed to be symmetric, anti – symmetric and quasi – 

isotropic. 

Four lamination schemes were considered which are symmetric and anti – symmetric cross – ply and angle – ply 

laminates. Table 1 gives a comparison between the non – dimensional buckling loads for all lamination schemes. The 

results are shown graphically in Figure 6. The thickness of all layers is assumed equal, the length to thickness ratio 

(𝑎/ℎ = 20), and the modulus ratio (𝐸1/𝐸2 = 5). It is noticed from Table 1 and Figures 6, 7 and 8 that the values of 

the non – dimensional buckling loads for both symmetric and anti – symmetric lamination are slightly different, 

except for symmetric and anti – symmetric angle – ply laminates which are exactly the same. Because of this fact, 

the rest of the upcoming effects will be discussed for symmetric case only. The results indicate that the symmetric 

laminate is stiffer than the anti – symmetric one. This phenomenon is caused by coupling between bending and 

stretching which lowers the buckling loads of symmetric laminate. 

  

Table 1  

The first five non – dimensional buckling loads P̅ = Pa2/E1h
3 of symmetric cross – ply (0/ 90/ 90/ 0) and anti – 

symmetric cross – ply (0/ 90/ 0/ 90), and symmetric angle – ply (45/ -45/ -45/ 45) and anti – symmetric angle – ply 

(45/ -45/ 45/ -45) laminated plates with 𝑎/ℎ = 20, and 𝐸1/𝐸2 = 5 

 

Lamination 

Scheme 

Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.6972 2.1994 1.8225 

 2 1.2522 2.5842 2.0097 

0/ 90/ 90/ 0 3 2.4284 4.1609 2.7116 

 4 2.6907 4.7431 4.3034 

 5 2.7346 5.0168 4.4536 

 1 0.6973 2.2273 1.5591 

 2 1.9947 3.9687 2.3391 

0/ 90/ 0/ 90 3 1.9958 3.9732 3.7581 

 4 2.6912 4.7871 3.8290 

 5 4.3962 7.0544 4.5402 
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 1 0.8729 1.9505 1.4756 

 2 1.6400 2.8534 2.1162 

45/-45/-45/45 3 2.3130 3.8941 3.3039 

 4 2.7100 4.3753 3.3068 

 5 3.5488 5.2694 4.4166 

 1 0.8729 2.2010 1.6554 

 2 1.6400 3.7616 2.5672 

45/-45/45/-45 3 2.3130 3.7654 3.4642 

 4 2.7100 5.6599 4.2174 

 5 3.5488 5.9540 4.8091 

 

 
Figure 6. Effect of lamination scheme for simply supported laminates 

 

 

 
Figure 7. Effect of lamination scheme for clamped – clamped laminates 
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Figure 8. Effect of lamination scheme for clamped – simply supported laminates 

 

Tables 2 and 3 show the buckling load of quasi – isotropic rectangular composite plate with 𝑎/ℎ = 20, 𝑎/𝑏 = 1 and 

different modulus ratios (𝐸1/𝐸2 = 40 and 5). The buckling load is highly influenced by its boundary conditions. The 

buckling load of the quasi – isotropic (0/+45/-45/90) rectangular composite plate with CC type boundary condition is 

1.5 times higher than the buckling load of the composite plate with CS type boundary condition and more than 3 

times of SS type boundary condition. 

 

Table 2  

The first three non – dimensional buckling loads of quasi – isotropic (0/+45/-45/90) laminated plates with a/h=20, 

and E1/E2 = 40 

 

Mode 

Number 

Boundary Conditions 

SS CC CS 

1 0.4905 1.6878 1.1683 

2 1.4842 3.0187 1.7359 

3 1.4850 3.0229 2.7673 

 

Table 3  

The first three non – dimensional buckling load of quasi – isotropic (0/+45/-45/90) laminated plates with a/h=20, and 

E1/E2 = 5 

 

Mode 

Number 

Boundary Conditions 

SS CC CS 

1 0.7338 2.2255 1.5717 

2 2.0202 3.9506 2.3714 

3 2.0214 3.9549 3.7214 
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3.2 Effect of Aspect Ratio  

 

In this study, the buckling loads for symmetrically loaded laminated composite plates of layer orientation 

0/90/90/0 have been determined for seven different aspect ratios ranging from 0.5 to 2.0 and two modulus ratios 40 

and 5 as shown in Tables 4 and 5 and Figures 9 and 10. The first mode of buckling loads was considered. It is 

observed that the buckling load increases continuously with increasing aspect ratio but the rate of increase is not 

uniform. This may be due to the effect of bending – extensional twisting stiffness which increases the critical load. 

The buckling load is maximum for clamped – clamped (CC), clamped – simply supported (CS) while minimum for 

simply – simply supported (SS) boundary conditions. This means that as the plate becomes more restrained, its 

resistance to buckling increases. The reason is that the structural stiffness reduces due to its constrains.  

  

Table 4  

The first three non – dimensional buckling loads P̅ = Pa2/E1h
3 of symmetric cross – ply (0/ 90/ 90/ 0) laminated 

plates with a/h = 20, and E1/E2 = 40 

 

Aspect Ratio 

(𝑎/𝑏) 

Mode 

Number 
SS CC CS 

 1 0.4143 1.0742 0.9679 

0.5 2 0.4236 1.0941 1.0484 

 3 0.5408 1.3751 1.1257 

 1 0.4300 1.2389 1.0444 

0.75 2 0.4978 1.2691 1.2043 

 3 0.6520 1.8354 1.2921 

 1 0.4409 1.3795 1.0723 

1.0 2 0.5580 1.5286 1.3105 

 3 1.0763 2.1648 1.6946 

 1 0.4224 1.5549 1.1349 

1.25 2 0.7795 1.7455 1.4327 

 3 1.6164 3.0019 1.8042 

 1 0.4400 1.6402 1.2543 

1.5 2 1.0787 2.2999 1.3330 

 3 1.6841 3.2702 2.4753 

 1 0.4885 1.8361 1.1494 

1.75 2 1.4473 3.0138 1.6342 

 3 1.8520 3.6574 2.7310 

 1 0.5642 2.1358 1.1054 

2.0 2 1.7525 3.7696 2.0207 

 3 1.8813 3.8703 2.8553 

 

Table 5  

The first three non – dimensional buckling loads P̅ = Pa2/E1h
3 of symmetric cross – ply (0/ 90/ 90/ 0) laminated 

plates with a/h = 20, and E1/E2 = 5 

 

Aspect 

Ratio 

(𝑎/𝑏) 

Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.6787 1.7786 1.6325 

0.5 2 0.6841 1.8364 1.7192 

 3 0.8672 2.2141 1.9284 

 1 0.6698 2.0107 1.7117 

0.75 2 0.8831 2.1504 1.9339 

 3 1.4912 2.7694 2.2689 

 1 0.6972 2.1994 1.8225 

1.0 2 1.2552 2.5842 2.0097 
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 3 2.4284 4.1609 2.7116 

 1 0.7726 2.3958 1.8397 

1.25 2 1.7753 3.5341 2.1821 

 3 2.6844 5.1641 3.8539 

 1 0.8943 2.7961 1.7643 

1.5 2 2.4305 4.8034 2.7358 

 3 2.6675 5.2420 4.6305 

 1 1.0588 3.3873 1.7741 

1.75 2 2.6919 5.4542 3.4532 

 3 3.2171 6.3629 4.7373 

 1 1.2630 4.1517 1.8578 

2.0 2 2.7619 5.8342 4.3179 

 3 4.1301 8.1942 4.6131 

 

 
Figure 9. Effect of aspect ratio for different boundary conditions, 

𝐸1/𝐸2 = 40 

 

 
Figure 10. Effect of aspect ratio for different boundary conditions, 

𝐸1/𝐸2 = 5 
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3.3 Effect of Material Anisotropy 

 

The buckling loads as a function of modulus ratio of symmetric cross – ply plates (0/ 90/ 90/ 0) are illustrated in 

Table 6 and Figure 11. As confirmed by other investigators, the buckling load decreases with increase in modulus 

ratio. Therefore, the coupling effect on buckling loads is more pronounced with the increasing degree of anisotropy. 

It is observed that the variation of buckling load becomes almost constant for higher values of elastic modulus ratio.  

 

Table 6  

The first three non – dimensional buckling loads P̅ = Pa2/E1h
3 of symmetric cross – ply (0/ 90/ 90/ 0) square 

laminated plates for different modulus ratios with a/h = 20 

 

𝐸1/𝐸2 
Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.6972 2.1994 1.8225 

5 2 1.2552 2.5842 2.0097 

 3 2.4284 4.1609 2.7116 

 1 0.5505 1.8548 1.3928 

10 2 0.8557 1.8951 1.8292 

 3 1.6532 2.9814 1.9089 

 1 0.5019 1.6663 1.2505 

15 2 0.7232 1.7248 1.6428 

 3 1.3966 2.6049 1.7694 

 1 0.4775 1.5515 1.1791 

20 2 0.6569 1.6524 1.5096 

 3 1.2683 2.4228 1.7394 

 1 0.4629 1.4828 1.1365 

25 2 0.6172 1.6055 1.4299 

 3 1.1916 2.3171 1.7214 

 1 0.4531 1.4366 1.1078 

30 2 0.5907 1.5723 1.3766 

 3 1.1402 2.2481 1.7094 

 1 0.4462 1.4044 1.0877 

35 2 0.5723 1.5479 1.3391 

 3 1.1043 2.2006 1.7009 

 1 0.4409 1.3795 1.0723 

40 2 0.5580 1.5286 1.3105 

 3 1.0763 2.1648 1.6946 
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Figure 11. Effect of material anisotropy 

 

3.4 Effect of Fiber Orientations of Layers 

 

The variation of the buckling load, �̅� with fiber orientation (𝜽) of square laminated plate is shown in Tables 7 

and 8, and Figs. 12 and 13. Three boundary conditions SS, CC and CS are considered in this case. The buckling 

loads have been determined for two modulus ratios 40 and 5. The curves of simply – simply supported (SS) 

boundary conditions show maximum value of buckling load at = 𝟒𝟓𝒐 . However, this trend is different for a plate 

under clamped – clamed (CC) boundary conditions which show minimum buckling load at 𝜽 = 𝟒𝟓𝒐. For clamped – 

simply supported, it is observed that the buckling load decreases continuously with 𝜽, this may be due to the total 

and partial fixed rotation (𝝓 𝒂𝒏𝒅 𝝍) in the two later cases.     

   

Table 7  

The first three non – dimensional buckling loads P̅ = Pa2/E1h
3 of laminated plates for different fiber orientations 

(θ) with a/h = 20, and E1/E2 = 40 

 

Orientation 

Angle (𝜃) 

Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.2604 0.6134 0.5561 

0 2 0.2825 0.6398 0.5729 

 3 0.3960 0.8738 0.6745 

 1 0.2759 0.5957 0.5496 

15 2 0.3171 0.6123 0.5855 

 3 0.4771 0.8638 0.7570 

 1 0.2823 0.5636 0.5114 

30 2 0.3125 0.5834 0.5352 

 3 0.4861 0.9552 0.7902 

 1 0.2773 0.5207 0.4230 

45 2 0.3253 0.5842 0.4490 

 3 0.5135 0.9793 0.7093 

 1 0.2834 0.5574 0.3073 

60 2 0.3116 0.5788 0.3895 

 3 0.4783 0.9107 0.6362 

 1 0.2762 0.5859 0.3137 

75 2 0.3153 0.6043 0.3297 
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 3 0.4161 0.8252 0.4924 

 1 0.2602 0.6061 0.3069 

90 2 0.2811 0.6260 0.3438 

 3 0.3908 0.8429 0.4801 

 

Table 8  

The first three non – dimensional buckling loads P̅ = Pa2/E1h
3 of laminated plates for different fiber orientations 

(θ) with a/h = 20, and E1/E2 = 5 

 

Orientation 

Angle (𝜃) 

Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.6970 2.1130 1.6496 

0 2 1.0086 2.1396 2.0991 

 3 1.7709 3.1397 2.1597 

 1 0.7108 2.0261 1.6665 

15 2 1.0908 2.1400 1.9833 

 3 1.8704 3.2340 2.2141 

 1 0.7457 1.8142 1.6326 

30 2 1.2613 2.2494 1.7099 

 3 2.0671 3.4809 2.4700 

 1 0.7665 1.7189 1.3114 

45 2 1.3477 2.3567 1.7689 

 3 2.1557 3.5899 2.7032 

 1 0.7457 1.8147 1.0893 

60 2 1.2602 2.2457 1.7913 

 3 2.0637 3.4650 2.6452 

 1 0.7110 2.0264 0.9824 

75 2 1.0898 2.1366 1.6562 

 3 1.8659 3.2178 2.7338 

 1 0.6970 2.1101 0.9573 

90 2 1.0080 2.1389 1.5827 

 3 1.7666 3.1269 2.7322 

 

 
Figure 12. Effect of fiber orientation of layers, 𝐸1/𝐸2 = 40 
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Figure 13. Effect of fiber orientation of layers, 𝐸1/𝐸2 = 5 

 

3.5 Effect of Reversing Lamination Scheme 

 

In order to study the stacking sequence of laminated plates, two lamination schemes of cross – ply (0/ 90) and 

(90/ 0) and two other lamination of angle ply (45/ -45) and (-45/ 45) were considered. The results of their buckling 

loads of parameter (�̅� = 𝑷𝒂𝟐/𝑬𝟏𝒉
𝟑) are given in Tables 9, 10, 11 and 12. Three boundary conditions SS, CC and 

CS are considered in this case. The buckling loads have been determined for two modulus ratios 40 and 5. It is 

observed that, the buckling loads are completely the same for the given first three modes. 

Therefore, it can be concluded that the buckling load of laminated plates will remain the same even if the 

lamination order is reversed. The reason behind this is that the transformed elastic coefficients, [𝐶𝑖𝑗], are equal for 

both lamination schemes.   

 

Table 9 

Non – dimensional buckling loads P̅ = Pa2/E1h
3 of (0/ 90) and (90/ 0) lamination schemes of square laminated 

plates with a/h = 20, and E1/E2 = 40 

 

Lamination 

order 

Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.4410 1.6885 1.1512 

0/90 2 0.4494 3.0311 1.6881 

 3 1.4502 3.0349 2.5982 

 1 0.4410 1.6885 1.1512 

90/0 2 0.4494 3.0311 1.6881 

 3 1.4502 3.0349 2.5982 
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Table 10 

Non – dimensional buckling loads P̅ = Pa2/E1h
3 of (0/ 90) and (90/ 0) lamination schemes of square laminated 

plates with a/h = 20, and E1/E2 = 5 

 

Lamination 

order 

Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.6970 2.2275 1.5593 

0/90 2 1.9943 3.9687 2.3388 

 3 1.9954 3.9733 3.7581 

 1 0.6970 2.2274 1.5594 

90/0 2 1.9944 3.9688 2.3393 

 3 1.9957 3.9733 3.7580 

 

Table 11 

Non – dimensional buckling loads �̅� = 𝑃𝑎2/𝐸1ℎ
3 of (45/ -45) and (-45/ 45) lamination schemes of square laminated 

plates with 𝑎/ℎ = 20, and 𝐸1/𝐸2 = 40 

 

Lamination 

order 

Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.8375 1.6524 1.2806 

45/-45 2 1.7263 2.7630 1.9965 

 3 1.7285 2.7659 2.5358 

 1 0.8372 1.6527 .2805 

-45/45 2 1.7262 2.7631 19963 

 3 1.7283 2.7660 2.5355 

 

Table 12  

Non – dimensional buckling loads P̅ = Pa2/E1h
3 of (45/ -45) and (-45/ 45) lamination schemes of square laminated 

plates with a/h = 20, and E1/E2 = 5 

 

Lamination 

order 

Mode 

Number 

Boundary Conditions 

SS CC CS 

 1 0.9907 2.2010 1.6553 

45/-45 2 2.1995 3.7613 2.5668 

 3 2.2015 3.7652 2.4640 

 1 0.9908 2.2010 1.6553 

-45/45 2 2.1995 3.7613 2.5671 

 3 2.2015 3.7652 3.4636 

 

3.6 Effect of Boundary Conditions 

 

The type of boundary support is an important factor in determining the buckling loads of a plate along with other 

factors such as aspect ratio, modulus ratio, … etc. 

Three sets of boundary conditions, namely simply – simply supported (SS), clamped – clamped (CC), and 

clamped – simply supported (CS) were considered in this study.  

The variations of buckling load, �̅� with the mode number for thin (𝑎/ℎ = 20) symmetrically loaded laminated cross 

– ply (0/90/90/0) plate with modulus ratio (𝐸1/𝐸2 = 5) were computed and the results are given in Table 13 and 

Figure 14.  

It is observed that, for all cases the buckling load increases with the mode number but at different rates depending 

on whether the plate is simply supported, clamped or clamped – simply supported. The buckling load is a minimum 

when the plate is simply supported and a maximum when the plate is clamped. Because of the rigidity of clamped 

boundary condition, the buckling load is higher than in simply supported boundary condition. It is also observed that 

as the mode number increases, the plate needs additional support. 
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Table 13  

The first five non – dimensional buckling loads P̅ = Pa2/E1h
3 of symmetric (0/90/90/0) square laminated plates 

with a/h = 20, and E1/E2 = 5 

 

Mode 

Number 

Boundary Conditions 

SS CC CS 

1 0.6972 2.1994 1.8225 

2 1.2552 2.5842 2.0097 

3 2.4284 4.1609 2.7116 

4 2.6907 4.7431 4.3034 

5 2.7346 5.0168 4.4536 

      

 
Figure 14. Effect of boundary conditions 

 

 

4.  Conclusion 

 

The finite element model has been formulated to compute the buckling loads of laminated plates with rectangular 

cross – section and to study the effects of lamination scheme, aspect ratio, material anisotropy, fiber orientation of 

layers, reversed lamination scheme and boundary conditions on the non – dimensional critical buckling loads of 

laminated composite plates. Finally, a series of new results have been presented.  

The symmetric laminate is stiffer than the anti – symmetric one. This phenomenon is caused by coupling between 

bending and stretching which lowers the buckling loads of symmetric laminate. 

The buckling load is highly influenced by the end support. The buckling load of the quasi – isotropic (0/+45/-

45/90) rectangular composite plate with clamped – clamped type boundary condition is 1.5 times higher than the 

buckling load of the composite plate with clamped – simply supported (CS) type boundary condition, and more than 

3 times of simply – simply supported (SS) type boundary condition. 

The buckling load increases continuously with increasing aspect ratio, but the rate of increase is not uniform. 

This may be due to the effect of bending – extensional twisting stiffness which increases the critical load.  

As the plate becomes more restrained, its resistance to buckling increases. The reason is that the structural 

stiffness reduces due to its constraints.  

The buckling load decreases with increase in modulus ratio. It is also observed that the variation of buckling load 

becomes almost constant for higher values of elastic modulus. This may be attributed to the coupling effect which 

increases with the increasing degree of anisotropy. 
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The curves of simply – simply supported (SS) boundary conditions show maximum value of buckling load at θ =
45o. However, this trend is different for a plate under clamped – clamped (CC) boundary conditions which show 

minimum load at θ = 45o. For clamped – simply supported, it is observed that the buckling load decreases 

continuously with θ. This may be due to the total and partial fixed rotation ϕ and ψ in the two later cases. 

The buckling load of laminated plates will remain the same even if the lamination order is reversed. The reason 

behind this is that the transformed elastic coefficients, [Cij], are equal for both lamination schemes.  

The buckling load increases with the mode number but at different rates depending on whether the plate is simply 

supported (SS), clamped (CC) or clamped – simply supported. The buckling load is a minimum when the plate is 

simply supported and a maximum when the plate is clamped. Because of the rigidity of clamped boundary condition, 

the buckling load is higher than in simply supported boundary condition. It is also observed that as the mode number 

increases, the plate needs additional support. 
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