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The paper presents linear, quadratic, signomial and radial-based neural 

networks for the estimation of the mechanical properties of steel profiles for 

construction obtained from the chemical composition of the batches, the 

cross-section of the profile to be laminated, for the lamination workshops 

taken as case studies. As primary information, a database with the batches 

produced in the Antillana de Acero rolling mills is used for more than ten 

years. The results obtained show that the radial base neural networks 

applying Landweber's iterative regularization method to network training 

provide the highest precision. The signomial, quadratic and linear models 

reach similar values of precision taking as a criterion of comparison the 

standard deviation of the estimate with respect to the results of the passive 

experiments obtained from the quality control of the production. The 

modeling work is done for the case studies of the laminating workshops 250 

and 300 of the steel company Antillana de Acero. 
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1.  Introduction 

 

The estimation of properties of materials is an essential requirement for the allocation of their destination of use. 

Among these materials, steel stands out for the versatility of its properties, being currently a strategic line for the 

growth of countries. Within the steel productions, the industry of the laminated profiles for the construction 

constitutes a line of high economic repercussion in the country. 
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This production refers to corrugated bars, round and square profiles for national consumption and export to 

countries in the area and is concentrated in the mills of the Antillana de Acero and Acinox Tunas Companies, which 

also have respective electric steelworks in charge to provide the semi-product in the form of billets. 

The need to allocate destiny to the billets produced in the steel mills arises in such away. In other words, it is 

necessary to define the workshop profile and quality grade that should be assigned to each batch produced, in order 

to optimize the efficiency criteria of the production company, ensuring the quality indicators required by customers. 

The problem of generating destination options is directly related to the general problem of optimal selection of 

materials, which has been studied by numerous authors. In effect, the problem of which batches have to be used in 

certain destinations of the set of batches in the process is a problem of optimal selection of materials (Ashby et al., 

2010; Bin, 1994). 

In the works Ashby (2011); Ashby et al., (2010), the development of material selection methodologies is 

exposed. The methodology exposed in these works has great acceptance in the engineering of modern materials, 

those that start from the contrast that arises between the combination of the attributes of the processes and the 

properties of the materials by means of special graphics (Ashby, 2011; Ashby et al., 2010). This methodology, being 

of a general nature, avoids indicators and restrictions associated with technical and organizational factors, 

determining the generation of destination options for batches of the steel industry, discriminant to reduce the number 

of alternatives to be evaluated in problems of material selection (Guerra, 1994). The destination of batches is a 

component part of the general direction, of the production process of steel companies, so it study must be done from 

the tasks associated with the direction of steel production and is an essential task for saving materials premiums, as a 

consequence of the better use of the batches in process and allows to guarantee a correct distribution of resources in 

the steel companies (Arzola, 1998; Arzola, 2000; Arzola & Suárez, 1993; Arzola, 2009). 

The mathematical models that appear in the available literature for the estimation of the properties are statistical, 

linear and quadratic (Arzola & Suárez, 1993; Arzola, 2009; Elanayar & Shin, 1994). Like multilayer perceptrons, 

they serve as universal function approximations Elanayar (1999); Karayiannis, 1999; Demuth & Beale, 2002; Neto et 

al., 2013), these networks provide nonlinear models with greater precision than statistical models (Elanayar & Shin, 

1994; Martin Del Brío & Sanz, 2001; Wesley, 1997). This special type of networks has great power of generalization 

when the data define smooth functions, however, when they come from measurements noisy, it is possible that its 

generalization decays considerably (Wesley, 1997).  

The process of training and learning a radial base network can be faced from the point of view of the inverse 

problems, which allow knowing the mathematical model or the causes that they originate a certain known effect, 

Demuth & Beale, (2002); Morozov (1993); Silva (2012); Silva (2005), this solution approach allows applying 

regularization strategies to this problem, with which the original problem becomes an approximation, less affected by 

the noise of the experimental data (Morozov, 1993; Moura et al., 2013; Snieder & Trampert, 1999). 

 

 

2.  Materials and Methods 

 

At the same time, in the universal literature, there are no satisfactory results that allow to accurately evaluate the 

mechanical properties of steels for the production of corrugated bars profiles for construction, so the development of 

such procedures becomes relevant (Sánchez et al., 2018; Hernández et al., 2017). 

The influencing factors on the mechanical properties are constituted by the chemical composition of the steel, 

thermal regime and deformation of the steel. The latter is practically constant in each workshop, depending on the 

profile produced, that is, its cross-section, represented by the diameter (D) or its square (D2). For the low alloy 

profiles for the construction produced in the companies of the country, determinants of the chemical composition are 

the carbon (C), silicon (Si) and manganese (Mn). Thus, the percentage composition of these three chemical elements 

is adopted as variables for the evaluation of properties. The properties to be evaluated are the yield strength (Re) and 

the breakage limit (Rm) of the batches. 

Conditions of experimentation and analysis of the results. In the laboratory of mechanical tests of the company 

Caso de Estudio, a database of 7896 measurements of the yield strength and breakage of batches with different 

values of chemical composition and diameter and 6743 measurements of workshop 300 was taken. The data were not 

treated previously (Parraga et al., 2017; Simpen et al., 2018). 
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3.  Results and Discussions 

 

Linear 

 

Models Linear models for estimating properties are the most widespread in practice. The results obtained by 

modeling the estimation of properties are presented below.  

Workshop 250.  

The result of the modeling, aided by the Statgraphics linear regression package, considering the diameter of the final 

profile as representative of the cross-section of the finished product. 

 

Re = 29.71 + 38.3 C + 6.53 Mn + 5.4 Yes - 0.35 D 

 

The R-squared statistic indicates that the model explains 81% of the variability of Re.   

The standard error of the estimate is 1.84 Kgf / mm2. This value can be used to construct the residuals of the new 

possible observations around the calculated values. 

Rm, workshop 250 

The modeling result is as follows: 

Rm = 33.60 + 73.78 C - 0.32 D + 13.25 Mn + 9.4Yes 

The R-squared statistic indicates that the model explains 84.83% of the variability Rm.   

The standard error of the estimate is 2.48 Kgf / mm2. This value can be used to construct the residuals of the new 

possible observations around the calculated values. 

 

Workshop 300, Re 

The result of the modeling, considering the diameter of the final profile as representative of the cross-section of the 

finished product provides the following model. 

 

Re = 27.95 + 40.3 C - 0.28 D + 7.10 Mn + 5.08 Yes 

 

A significant relationship between the variables is reached at the 99% confidence level. 

The R-squared statistic indicates that the model explains 85.4% of the variability of Re.   

The standard error of the estimate is 1.75 Kgf / mm2. This value can be used to construct the residuals of the new 

possible observations around the calculated values. 

Workshop 300, Rm 

The modeling result is as follows: 

Rm = 30.11 + 84.13C - 0.22 D + 13.13 Mn + 6.29Yes 

The R-squared statistic indicates that the model explains 89.53% of the variability of Rm.   

The standard error of the estimate is 2.53 Kgf / mm2. This value can be used to construct the residuals of the new 

possible observations around the calculated values. 

In all cases, the Durbin-Watson (DW) statistician's test determines that there is no significant correlation based on 

the order in which the data is found in the database and 

the P-value in the ANOVA table is less than 0.01, which indicates that the highest order term is statistically 

significant at the 99% confidence level. 

 

Quadratic models 

 

Workshop 250, Re 

The result of modeling, considering not only the squares of the variables but their interaction, provides the following 

model. 

 

 

Re = 25,329 + 26,8247 C + 16.64 C2 - 0.016 D2 + 16.22 Mn - 6.2 Mn2 + 13.6 Yes - 21.95 Yes2 

 

The R-squared statistic indicates that the model explains 81.6% of the variability of Re.  
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The standard error of the estimate is 1.83 Kgf / mm2. This value can be used to construct the residuals of the new 

possible observations around the calculated values. 

Workshop 250, Re 

 

The result of modeling, considering not only the squares of the variables but their interaction, provides the following 

model 

 

Rm = 36.6664 + 39.27C + 19.69Mn + 23.48Yes - 0.74D + 37.25C2 - 7.30Mn2 - 32.78Yes2 + 0.02D2 + 16.51CMn 

 

The R-squared statistic indicates that the model explains 85.11% of the variability of Rm.  

The standard error of the estimate is 2.78 Kgf / mm2. This value can be used to construct the residuals of the new 

possible observations around the calculated values. 

 

Workshop 300, Re 

The output shows the results of quadratic adjustment between Re and the independent variables. The equation of the 

adjusted model is  

 

Re = 25.75 + 42.36 C - 19.55 C2 + 13.04 CMn - 0.17 D - 0.003 D2 + 6.80 Mn - 2.15 Mn2 + 14.31 Yes - 21.51 Yes2 

 

The R-squared statistic indicates that the model explains 85.6% of the variability of Re.  

The standard error of the estimate is 1.74 Kgf / mm2. This value can be used to construct the residuals of the new 

possible observations around the calculated values. 

The equation of the fitted model of Rm is: 

 

Rm = 24.20 + 0.24 D + 72.65 C + 14.49 Mn + 34.87 Yes -0.01 D2 - 2.67Mn2 - 63.78 Yes2   + 11.72 C Mn  

 

The R-squared statistic indicates that the model explains 89.69% of the variability of Rm.  

The standard error of the estimate is 2.51 Kgf / mm2. This value can be used to construct the residuals of the new 

possible observations around the calculated values. 

In all cases, the Durbin-Watson (DW) statistician's test determines that there is no significant correlation based on 

the order in which the data is found in the database and 

the P-value of the ANOVA table is smaller 0.01, so a significant relationship of the variables is reached at the 99% 

confidence level. 

 

Signomial models 

The function,   

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It is called a monomial function of the positive variables 𝑥1, 𝑥2, . . . , 𝑥𝑛. The constant 𝑐 >  0  is called the coefficient 

of the monomial function, and the real constants 𝛼1, 𝛼2, . . . , 𝛼𝑛 exponents of the monomial function 4 , 21 .  

It is called polynomial function with m terms to the sum of one or more monomials, that is, a function of the form   

 

 

(2) 

 

Where: 

 𝑐𝑘 >  0 , 𝛼𝑖𝑘 ∈ 𝑅, 𝑖 =  1, 2, . . . , 𝑛;  𝑘 =  1,2, . . . , 𝑚. They are parameters and 𝑥𝑖 are positive variables. If 𝑐𝑘 ∈ 𝑅, then 

𝑔 (𝑥) is called the signomial function. Thus, the signomial functions generalize the postinomial, quadratic, linear, 

etc., so that the precision of the adjustment by a signomial model can not, conceptually, be worse than the adjustment 

by any of the previous models, provided that this adjustment is made correctly. 

 

The processing of the data is done according to the procedure explained in the paper 21 . 

Adjustment of Re, workshop 250: 
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Re = 0.12 + 81C0.4 Mn0.21Yes0.008D-0.134 + 6.1Yes0.05D0.06C^ -0.3Mn-0.1 

Error Standard = 1.81; 

R 2 = 82.72% 

Setting Rm, workshop 250: 

Rm = 4.57 + 124.27C0.52Mn0.24If0.03D-0.06+ 5.78 Yes.07C-.46 Mn-026D-0.07 

Error= 2.41,  

R ^ 2 = 0.87 

Adjustment of Re, for the workshop 300 

The model was obtained: 

Re= 4.75 + 81.89 C0.31 Mn0.15 Yes0.02 D-0.12 + 4.95 C2.05 Mn1.49 D-0.07 Yes-0.17 

 Standard Error = 1.7343;   

R ^ 2 = 0.8610 

Adjust Rm, 300 workshop 

Rm =121.42 17.14 +C0.55Mn0.25If0.02D-0.08 + 0.93 D0.11 C0.28 Mn0.21 Yes-0.05 

Standard error = 2.48 

R ^ 2 = 0.9110 

 

Radial-based neural network models 

 

The architecture of an artificial radial-based neural network has three layers of neurons: one input, one hidden 

and one output. Input neurons only send information from the outside to the next layer. The neurons of the hidden 

layer employ an activation function of radial symmetry (usually Gaussian), which operates in dependence on the 

distance that separates the vector of inputs with respect to the vector of synaptic weights stored by each neuron 

(center of the function of radial base), evaluating the radial function in said difference. The neurons of the output 

layer are linear and essentially calculate the weighted sum of the outputs provided by the hidden layer (Martin Del 

Brío & Sanz, 2001; Patan, 2008; Wesley, 1997; and Demuth & Beale, 2002). 

 

The output for this type of network is as follows: 

      (3)                                                                                                                                 

Where:  

qGaussian width node q 

rq distance between the input vector from the center of the Gaussian node q 

Wsq facilitates connection weight between the hidden neuron q and output s   

s threshold of the output node s 

  

3.1 Learning of Radial Based Neural Networks 

 

The first phase of the training or unsupervised phase consists of setting the size of the hidden layer, that is, the 

number of radial neurons. Then, in the supervised phase, two parameters of the hidden layer are determined that are 

essential for a good performance of the neural network in general: the center c and the width σ, which will take their 

definitive value once the learning is done. The value of the centers can be obtained using some supervised algorithm 

for clustering, such as the well-known k-means algorithm, where k refers to the number of radial nodes that one 

wishes to find (Martin Del Brío & Sanz, 2001; Wesley, 1997). To obtain the values of the widths, we can calculate 

the uniform average of the distances from each center to the b nearest centers.                                                                       

The learning of the artificial neural networks of the radial base is generally of the hybrid type, being carried out 

in two stages. First, unsupervised training is carried out in the hidden layer, that is, the response of the radial basis 

functions to the input data is determined. Subsequently, supervised training is carried out in the output layer: With 

the response of the neurons of the hidden layer, the weights and pathways of the output layer are determined, so that 

the output is the desired in the training data (Patan, 2008).  

Be; K: Rm          Rn a linear operator, the process of searching the weights and pathways of the output layer can be 

formulated as follows: Find wMn,m (R) as the solution of the linear equation. 
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This equation can be solved by the least-squares method. In this way, the radial-based neural networks leave an error 

of almost zero in the training data (Elanayar & Shin, 1994; Martin Del Brío & Sanz, 2001; and Patan, 2008), but 

many times a large error in the validation or generalization.                                                                                                    

The search for the weights and pathways of the output layer, that is, the supervised phase of the training of the radial-

based neural network, can be interpreted as the solution of a reverse problem.  

 

3.2 Literative Method of Landweber   

 

The Landweber method is a strategy for regularizing inverse problems (Silva & Becceneri, 2009); Arzola & 

Valdés, 2008). It is used to give an approximate solution of equation (4) when the measurements of the member on 

the right are contaminated with noise. The approximate solution of (4), w  is computed by the iterative process  

,2,1,0;')'( ,0,1,   twRaKwKaKIw tt 

   (5) 

                                                                                                                                                                                                                                                           

K’  denotes the conjugate operator Koperator.Now, be K: X  And a linear, compact and injective operator with 

dense image subspace; be uR, u1 y RY so that ‖𝑅 − 𝑅‖ ≤  y ‖𝑅 − 𝑅‖ ≥ 𝑢; the following statements are 

valid 

 

𝑙𝑖𝑚𝑡→∞‖𝐾𝑤𝑡, − 𝑦‖ = 0,  0;  That is, the iterative process (6) can be performed until finding the integer 𝑡 =

 𝑡 () the smallest with which it is guaranteed that ‖𝐾𝑤𝑡, − 𝑎𝑛𝑑 ‖ ≤ 𝑢. This constitutes the stop rule of algorithm. 

 

‖𝑤𝑡, − 𝑤‖ ≤ √𝐸, Yes 𝑤 = 𝐾’𝑓𝑅(𝐾’), if for some e  0 and for some f with ‖𝑓‖ ≤ 𝐸, this is an approximation 

of the error made in computing the solution by the process (5). 



In the first training stage of each neuronal network, 100 neurons were taken from the hidden layer and then the 

centers and widths were calculated. The centers were determined by the algorithm of the k-means, and the widths as 

the uniform mean of the distances from the center of each neuron to the 10 closest centers. Once this procedure was 

done, the number of neurons in the hidden layer was increased, adding 10 neurons in each experiment, until the best 

fit of the data was obtained in each case. The parameters found were 2250 radial-based neurons with a coefficient of 

determination R2 = 88.57% using the validation data for workshop 250. This means that the model obtained by the 

neural network explains 88.57% of the variations in the data, with a quadratic error of 0.0788 kgf / mm2. For 

Workshop 300, the best fit neural network is composed of 3002 neurons in the hidden layer, obtaining a coefficient 

of determination of R2 = 85.21% with a quadratic error of 0.0963 kgf / mm2. An increase in radial base neurons does 

not improve the fit in either case.  

    After the first phase of network training, the supervised phase of the output layer of each radial base network was 

carried out, using Landweber's iterative method as a regularization strategy. Once the hypotheses imposed by the 

algorithm were verified, the parameters of the output layer were determined. Figure 1 shows the errors of the 

adjustment of the yield limit by the radial-based neural network, where the Landweber method was used, in 

workshop 250. As observed, the errors in the generalization stage are not high, and they are within an acceptable 

range for the estimation of said mechanical property of the batches.  

The errors in the adjustment of the limit of rupture are presented in figure 2. In the estimation of this property, 

there were greater errors than in the estimation of the yield limit, but they are considered acceptable because they are 

not so coarse.  
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Figure 1. Errors in the generalization phase of the radial base network in the estimation of the yield strength 

(Workshop 250) 

 

The coefficient of determination for the adjustment of the yield strength was R2= 95.43% and for the limit of rupture 

of R2= 93.51%, with a quadratic error of 0.197 and 0.0265, respectively. Both coefficients show a high explanation 

of the data by the model and a strong linear correlation between the experimental data and those estimated by the 

model.  

   In the estimation of the yield strength in workshop 300, results similar to those of workshop 250 were obtained. 

Figure 3 shows an allowable error in the estimation of the yield strength, whose coefficient of determination is R2= 

93.03%. with a quadratic error of 0.369 kgf / mm2. 

 

 
Figure 2. Errors in the generalization phase of the radial base network in the estimation of the breaking limit 

(Workshop 250). 
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Adjustment errors in the breakage limit in shop 300 are greater than those in the creep limit estimate, but also 

acceptable. The coefficient of determination, in this case, is R2 = 92.46%, with a quadratic error of 0.301 kgf / mm2. 

Figure 4 shows the behavior of this property measured and estimated.  

 

 
Figure 3. Errors in the generalization phase of the radial base network in the estimation of the yield strength 

(Workshop300) 

 
Figure 4. Errors in the generalization phase of the radial basis network in the estimation of the breakage limit 

(Workshop 300) 

 

3.3 Comparison of the Evaluation by Different Models 

 

The comparison is made based on the coefficient of determination and the standard error obtained during modeling 

by different models. Tables 1, 2, 3 and 4 show the results of this comparison. 

 



           ISSN: 2454-2261 

IRJEIS   Vol. 5 No. 4, July 2019, pages: 16~27 

24 

Table 1 

Comparison of the evaluation of mechanical properties by different models, workshop 250, Re 

 

Indicator 

Model 

 

Standard error 

(Kgf / mm2) 

Coefficient of 

determination 

(%) 

Linear 1, 84 81 

Quadratic 1.83 81.6 

Signomial 1.81 82.72 

Neural networks 0.197 95.43 

 

Table 2 

Comparison of the evaluation of mechanical properties by different models, workshop 250, Rm 

 

Indicator 

Model 

 

Standard error 

(Kgf / mm2) 

Coefficient of 

determination 

(%) 

Linear 2.78 84.3 

Quadratic 2.48 85.11 

Signomial 2.41 0.87 

Neural networks 0.1265 93.51 

 

Table 3 

Comparison of evaluation of mechanical properties of different models, shop 300, Re 

 

Indicator 

Model 

 

Errorstandard 

(Kgf / mm) 

Coefficient  

Determination  

(%) 

Linear 1.75 85.4 

Quadratic 1.74 85.6 

Signomial 1.73 86.1 

Neural networks 0.37 93.03 

 

Table 4 

Comparison of the evaluation of mechanical properties by different models, workshop 300, Rm 

 

Indicator 

Model 

 

Standard error 

(Kgf / mm2) 

Coefficient of 

determination 

(%) 

Linear 2.53 89.53 

Quadratic 2.51 89, 69 

Signomial 2.48 91.1 

Neural networks 0.301 92.46 

 

As can be seen, the quadratic and signomial models improve very little, in all cases, the quality indicators of respect 

to the linear model. However, a significant improvement is achieved by using radial-based neural networks. 

 

 

4.  Conclusion 

 

The problem of generating metal destination options in steel companies is solved by minimizing the excess of 

mechanical properties, ensuring the required values of these for the fulfillment of the service designation. In the 

solution of this task, it is necessary to estimate said mechanical properties, which can be done with the help of 

different models. The quadratic and signomial models improve very little, in all the cases studied, the quality 
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indicators of respect to the linear model. However, a significant improvement is achieved by using radial-based 

neural networks. 

The model of radial-based neural networks does not achieve a good generalization for the studied case associated 

with the estimation of mechanical properties of the finished products of the production of light steel profiles from 

semi-products, steel billets, as the data come from noisy sources. However, when applying the Landweber method to 

the supervised training phase of the radial-based network, in the problem of estimating the yield strength and 

breakage of the batches, in both lamination workshops studied by the Antillean Steel Company, very favorable 

results were obtained. With this method of regularization applied in the training of the radial base network, seen as a 

reverse problem, the error in the adjustment was reduced by 11 times, so it can be concluded that the model, among 

the studied ones, that allows achieving the best evaluation is the radial-based neural network. This result allows to 

considerably improve the quality of the generated destination options. 
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