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The article is devoted to the study of the scattering of nonlinear acoustic 

waves on cylindrical bodies. There was made a review of publications on the 

scattering of acoustic waves by inhomogeneities of the medium in the form 

of cylindrical bodies and shells. There were noted features of the small 

parameter method application in nonlinear acoustics. A three-dimensional 

model of the geometry of the problem in cylindrical coordinates was 

presented, nonlinear wave processes occurring between the falling plane and 

scattered cylindrical waves were described. The inhomogeneous wave 

equation is solved by the method of successive approximations of series 

expansion in a small parameter. An asymptotic expression for the acoustic 

pressure of a difference-frequency wave was obtained. A program for 

calculating scattering diagrams has been developed, and an algorithm for its 

operation is given. The acoustic pressure scattering diagram of a differential 

frequency wave on a rigid cylinder and its three-dimensional model are 

presented. The radius of convergence of the used method of expansion in a 

small parameter is determined. 
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1   Introduction 

 

The aquatic environment of the coastal waters of the World Ocean usually contains heterogeneities of natural and 

artificial origin. These heterogeneities often have a geometrically complex shape, however, bodies with a 

geometrically simple regular shape are first used to study them. Therefore, the problem of scattering of acoustic 

waves on bodies of a regular geometric shape is a standard in the waves scattering theory. Despite the sufficient 

elaboration of scattering problems, the question of scattering of nonlinearly interacting acoustic waves on a cylinder 

remains unexplored. This work is devoted to an asymptotic method for describing wave processes in the scattering of 
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nonlinearly interacting plane acoustic waves by cylindrical bodies and to determining the applicability limits of the 

proposed method (Abbasov & Zagrai, 2019). The study of this problem can increase the efficiency of the use of 

hydroacoustic parametric antennas for the near location. Using a wide frequency range of secondary waves 

(differential, total frequency waves, and second harmonics), it is possible to obtain important information about the 

properties of underwater inhomogeneities.  

 

2   Publication Overview 
 

Let us consider a review of the current state of publications on this topic; the scattering problem on cylindrical bodies 

(or shells) is often considered for the case of falling linear acoustic waves. Therefore, we will consider publications 

devoted to the scattering of both linear waves and nonlinear acoustic waves. These problems are usually solved in 

cylindrical coordinates and have a similar geometry of the problem statement.    

The case of scattering of linear acoustic waves on axisymmetric rigid bodies and shells is considered in Partridge 

& Smith (1995), where the deformed cylinder method is used. The results of scattering are compared with other 

known methods at small angles of incidence of acoustic waves. The article Kleshchev (2011), presents the 

methodology and block diagram of the experiment for measuring the amplitude and phase of the acoustic field in the 

near zone of a cylindrical diffuser. The results of measuring the scattering characteristics of a low-frequency sound 

signal by elastic cylindrical shells are analyzed. 

The article Andronov & Lavrov (2015), is devoted to the study of the field in the boundary layer near the surface 

of an elliptical cylinder. Using the Kirchhoff formula, this asymptotics is recalculated for a narrow sector near the 

major axis of the cylinder section. The obtained asymptotics are uniform and allow one to follow the modification of 

the far-field diagram from the limiting case of the strip to the circular cylinder. 

In the work (Mitri, 2016), an analytical theory using partial wave expansion is proposed for calculating acoustic 

backscattering by an infinitely long elliptical cylinder. By solving the system of linear equations by the matrix 

inversion method, the scattering coefficients for a rigid elliptic cylinder with Neumann boundary conditions are 

found. The results are relevant for problems of acoustic levitation and particle dynamics. 

The work Gurbatov et al., (2016), is devoted to studying the influence of discrete random bottom heterogeneities 

on the intensity of backscattering of acoustic signals. This problem arises in the remote diagnosis of deposits of iron-

manganese nodules on the seabed. The dependence of the backscattering intensity on the correlation in the mutual 

arrangement of particles on the bottom plane and their size distribution is considered. In the article Larin & 

Tolokonikov (2015), the angular and frequency dependences of the amplitude of the scattered sound wave are 

calculated for a homogeneous cylinder with a thermoplastic coating. It is shown that with the help of such a coating 

it is possible to change the sound-reflecting properties of the cylinder. Analytical expressions are obtained for 

inhomogeneities of the coating material providing the lowest intensity of the scattered acoustic field. 

The work Dmitriev (2018), is devoted to the study of acoustic waves scattering by inhomogeneities of small wave 

size using matrix Green functions. For small sizes of inhomogeneities, it is sufficient to consider the only scattering 

of monopole and dipole types. The results are confirmed by an analysis of the field scattered by a circular cylinder of 

a small wave radius in the numerical solution of the problem. The book Ostashev & Wilson (2015), is devoted to 

studies of the propagation and scattering of sound in moving media with deterministic and random inhomogeneities. 

Modern numerical methods for calculating noise pollution in the field of atmospheric acoustics are considered. 

Next, we consider several publications devoted directly to the nonlinear acoustic waves scattering by the medium 

inhomogeneities. An article Duck, (2002), is devoted to the study of nonlinear phenomena in the propagation of 

ultrasonic pulses. The problem arises in the ultrasound diagnosis of the biological environment in order to improve 

the visualization picture. The secondary harmonic acoustic field has a narrow spatial resolution, which is important 

for suppressing acoustic noise from side lobes.  

The work Dos Santos et al., (2015), is devoted to the use of nonlinear wave spectroscopy for biomedical 

ultrasound diagnostics. Various modes of propagation of acoustic pulses in nonlinear and layered media are 

considered. In the work Desjouy et al., (2016), the propagation and reflection of nonlinear shock acoustic waves 

from surfaces with hard boundaries are studied. The results of field experiments on the reflection of acoustic waves 

for different angles of incidence are discussed with the results of numerical simulations based on the two-

dimensional Navier-Stokes equations. 
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3   Small parameter method in nonlinear acoustics    

 
When solving nonlinear hydrodynamic problems for specific physical conditions, a simplification of the system of 

equations is required. One of the methods to simplify the system of equations is the small parameter method. The 

small parameter expansion method ε is relating to perturbation theory. In this case, the “unperturbed” problem 

corresponding to the zero value of the small parameter ε=0 is first solved. Next, by successive approximations, a 

solution to the “perturbed” problem is found when 0 . Perturbation refers to any small deviation from a 

simplified problem that allows an exact solution. In physics and mechanics, a limited number of problems can be 

solved exactly, so in almost every problem you have to use a simplified description. It comes down to finding one or 

more terms in the expansion of the desired solution of the small parameter. These methods belong to the class of 

asymptotic problems that make it possible to find out the mathematical and physical basis of the processes taking 

place. Their main drawback is the accuracy of the obtained asymptotic approximations; therefore, we will determine 

the limits of applicability of the method for our case.   

A diagram of the task for diagnosing an operational assessment of the underwater situation based on a 

hydroacoustic parametric antenna is shown in Fig. 1. The information received from the autonomous nonlinear 

hydroacoustic system can be further transmitted to the following processing links.  

 

 
Figure1. Hydroacoustic system for assessing the underwater environment of shallow water 

 

4   Statement of the problem of scattering by a cylinder 
 

We will consider wave processes when a cylindrical scatterer is located in the region of nonlinear interaction of 

primary pump waves of an acoustic parametric antenna (Abbasov, 2016). In this case, the condition of the plane-

wave incidence of pump waves onto the cylinder must be observed, therefore, the dimensions of the parametric 

antenna should be an order of magnitude larger than the radius of the cylindrical body. Then the cylindrical scatterer 

will be located in the near zone of the parametric antenna, where the incident wave has a flat shape. In our case, the 

cylindrical diffuser is acoustically rigid and satisfies the Neumann boundary condition. It should be noted that the 

pump waves of the parametric antenna are high-frequency, therefore, the scattering for them is geometric. For this 

reason, we consider the scattering problem in the high-frequency asymptotic limit.  

The geometry of the problem for the three-dimensional case is shown in Fig. 2, the axis of the cylinder of infinite 

length coincides with the axis z of the cylindrical coordinate system. A plane wave is an incident on a cylindrical 

surface parallel to the z axis. As a result of the scattering of a plane wave on a cylindrical surface, a scattered 

cylindrical wave will propagate in the surrounding space. In this case, the total primary acoustic pressure field will 

be determined by the expression:  
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nsni ppp )1(
,                                                              (1) 

 

where ni
p  the acoustic pressure of the incident and nsp - scattered waves, n = 1,2 corresponds to the incident 

waves with frequencies ω1 and ω2. 

 

 
Figure 2. The geometry of the scattering problem in three-dimensional space 

 

Wave phenomena for this case are described by a nonlinear wave equation (Novikov et al., 1987):   
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pQ  is a group of nonlinear terms, 0c the speed 

of sound in an aqueous medium, 0  the density of an unperturbed medium,  - is the parameter of quadratic 

nonlinearity, b  is the dissipative coefficient of the medium, v - is the vibrational velocity. 

To solve the wave equation (2), we will use the method of successive approximations of series expansion in a small 

parameter, in this case, the small parameter is the Mach number:   
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in water up to radiation levels of 280 dB relative to 1 µPa.  

According to the small parameter method, to a first approximation, nonlinear terms in equation (2) are not taken into 

account, it is assumed that 0Q . This corresponds to the linear problem of wave scattering in a dissipative medium, 

therefore, the solution )1(p  to the first approximation problem will be an expression (1). Then the spectral 

components of the function Q  are determined at the frequencies of the secondary field waves. To find the acoustic 

pressure of the waves of the secondary field 
)2(p  in the second approximation, the following linear inhomogeneous 

wave equation is solved:  
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5   The solution of a nonlinear wave equation for a different frequency wave 

 

Further, equation (3) is transformed into the inhomogeneous Helmholtz equation, its solution is the volume integral, 

which consists of the product of the Green's function and the density of sources of secondary waves of difference 

frequency (Novikov et al., 1987); (Dean, 1962):  
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where 111 )exp()( rrikrG   - Green's function, 
''' ,, zr  - coordinates of the current volume point, 

),,( '''' zrM  , r - distance to the observation point, ),,( zrM  , 1r - the distance between the current volume point 

),,( '''' zrM   and the observation point ),,( zrM   (Fig. 2).    

It is necessary to determine the Green's function for our case, the distance 1r  in the Cartesian coordinate 

system will be determined as 
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),,( zr   (Korn & Korn, 1961), we obtain 
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Next, we expand expression (6) in a row with precision to the second term [Dwight, 1983] 
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We substitute the obtained expressions into the original expression for the Green's function; this function in the far-

field will be determined by the following asymptotic expression:  
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Integration in expression (4) is carried out over the volume V , which is filled with sources of secondary 

waves and limited by the cylindrical coordinates by the relations:  
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where z ,  - wavelength of the differential frequency, the volume V  is a cylindrical layer of the medium 

around the diffuser with an internal radius a  (radius of the cylinder) and external d  (Fig. 2). The distance d  is 

determined by the length of the region of nonlinear interaction of high-frequency pump waves; we consider that the 

source waves are almost completely attenuated behind this region. 

Given the expression for the Green's function (7), expression (4) is transformed to  
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We integrate expression (8), since it does not depend on the coordinate 
'z , we consider separately the integral over 

the coordinate 
'  (with replacement 
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The first part of this expression, taking into account the expansion in a series of cylindrical functions (Dwight, 1983), 

takes the form 
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The initial expression (9), taking into account the obtained solutions, will take the form  
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Next, we take into account the asymptotic row expansion for the cylindrical Bessel function (Skudrzyk, 1971)  
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The volume integral of expression (8), taking into account solution (11), will take the form 
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Taking into account integration with respect to the coordinates 
'z  and 

' , the expression for the function of the 

sources of the secondary waves Q , in the second approximation we obtain the following expression for the total 

acoustic pressure of the difference-frequency wave: 
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This expression for the total acoustic pressure of a difference-frequency wave ),,()2( zrP  consists of four spatial 

terms. The first term corresponds to the nonlinear interaction of incident plane high-frequency waves 
1  and 

2 . 

The second term describes the interaction of an incident plane frequency wave 1  with a scattered cylindrical 

frequency wave 2 . The third term corresponds to the interaction of the incident plane 2  wave with the scattered 

cylindrical 
1 , and the fourth term characterizes the interaction of scattered cylindrical waves with frequencies 

1  

and 
2 . It can be noted that, within the framework of the considered wave processes, a nonlinear interaction occurs 

between acoustic waves with different spatial configurations of the wavefront. 
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6   Construction of scattering diagrams 

 

Further, for the calculation and construction hard hat scattering diagram acoustic pressure program «CylScatt» was 

developed. Figure 3 shows the scheme of the algorithm of this program, which consists of the following steps: 

a) Input data is set: linear frequencies of the initial incident waves 
1f , 

2f , the speed of sound in the aquatic 

environment, c , water density  , cylinder radius a , nonlinear parameter for the aquatic environment  ; 

the amplitude of the acoustic wave A , the initial and final value of the angle interval is   - 00 ÷1800, angle 

step  - 0,20. 

b) The wave parameters of the cylindrical diffuser are calculated: linear frequencies of the difference frequency 

wave (
F ), wavelength of initial waves and difference frequency ( 1 ; 2 ;  ), wave numbers of initial 

waves and difference frequency ( 1k ; 2k ; k ), the length of the region of nonlinear interaction of the initial 

high-frequency waves d , wave dimensions of the cylinder on the initial and secondary wave ( ak1 ;  ak2 ;  

ak ), calculation of the components of the spatial term of the acoustic pressure of the differential frequency 

wave ( ),,()2( zrP n  . 

c) Calculation of the total acoustic pressure of the differential frequency wave ( ),,()2( zrP  . 

d) Construction the scattering diagram of the total acoustic wave of difference frequency ( ),,()2( zrP  . 

e) Construction a three-dimensional diagram of the scattering on the cylinder of a wave of different frequency.   

 

 
Figure 3. Scheme the algorithm of the program «CylScatt» 
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In Fig.4. are presented scattering diagrams of the total acoustic pressure of difference frequency wave 

),,()2( zrP   on the cylinder with radius a =0.01m at constant wave dimension ak =5 a distance from the 

cylinder d =0.035m (primary wave frequencies 2f =1000 kHz, 1f =880 kHz, difference wave frequency F =120 

kHz). 

Analyzing the scattering diagram, it can note that while an increase in the length of the cylindrical layer around 

the scatterer leads to some narrowing of the main maxima. The latter property is characteristic of parametric 

antennas by analogy with an increase in the dimensions of the reradiation region. The primary plane waves form a 

scattering field in the forward and backward directions, and the scattered cylindrical waves create scattering in the 

lateral directions. 

 

Figure 4. Scattering diagrams of the total acoustic pressure of difference frequency wave ),,()2( zrP   on the 

cylinder with radius a =0.01 m at constant wave dimension ak =5 a distance from the cylinder d =0.035 m 

 

Figure 5 shows a three-dimensional model of the scattering diagram of the total acoustic pressure of a difference 

frequency wave ),,()2( zrP   on a rigid cylinder. A three-dimensional model in the form of an extruded body with 

a cutout of the fourth part is shown in a rectangular geometry. It clearly shows the distribution of the acoustic field 

around the cylindrical scatterer. On the horizontal plane xoy there is a curve of the scattering diagram shown in Fig. 

4. 

The scattering diagram has the main lobes in the directions 
00 , 2  and  , these directions correspond 

to the directions of the minimum phase differences of the nonlinearly interacting initial high-frequency waves. 

Incident plane waves form a scattering field in the opposite and forward directions, and scattered cylindrical waves 

in the lateral directions (Abbasov & Zagrai, 2017).   
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Figure 5. The three-dimensional model of the scattering diagram the total acoustic pressure difference frequency 

wave ),,()2( zrP    on a cylinder with a radius a =0.01m at ak =5, d =0.035m 

 

7   Determination of the radius of the circle of convergence 

 

We used the small parameter method to solve the nonlinear wave equation (2), it is necessary to determine the limits 

of applicability of this method, i.e. radius of convergence for a given decomposition. In a second approximation, 

acoustic pressure 
)2(p  is a solution to a linear inhomogeneous wave equation consisting of four spectral 

components of the secondary field 
12 ,  12  , 
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For the amplitude part of the acoustic pressure of the second harmonic wave 
22 , we similarly obtain: 
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The expression for the amplitude part of the acoustic pressure of the differential frequency wave will have the form 

 12  : 
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If we consider that 1, 21 kk , 21,kkk   and reflection coefficient 10 A : 
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Similarly, the amplitude part of the acoustic pressure of the wave of the total frequency 12    will have the 

form: 
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We substitute the amplitude parts of the acoustic pressure into the expression for the solution in the second 

approximation (12): 
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The convergence distance of the decomposition method is determined by the value of the characteristic time .chart , 

which is determined by equating the terms of a number of different approximations: 
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The characteristic time .chart  is determined by the radius of the circle of convergence of the expansion in the small 

parameter M. To obtain this parameter, we equate the amplitude coefficients of the terms of the first and second 

approximations: 
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This expression (19) for a characteristic time allows one to determine the radius of the circle of convergence of the 

expansion in the small parameter M. Outside the value of the radius of convergence, the expansion in a series in the 

small parameter M becomes divergent, and the research task loses its physical meaning. 
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8   Conclusion 

 

In conclusion, it can be noted that the article investigated the process of scattering of nonlinear acoustic waves on 

cylindrical bodies, describes the features of the applied methods and wave processes. A hydroacoustic system is 

proposed for assessing the underwater situation in shallow water areas. Using the method of successive 

approximations, we obtained the asymptotic expression for the acoustic pressure of a difference frequency wave. 

Using the developed program, scattering diagrams were calculated, three-dimensional models of the problem 

statement and scattering diagrams on a cylinder are presented. The radius of convergence of the used method of 

expansion in a small parameter was also determined. 
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