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A brain tumor classification system has been designed and developed. This 

work presents a new approach to the automated classification of astrocytoma, 

medulloblastoma, glioma, glioblastoma multiforme and craniopharyngioma 

type of brain tumors based on first order statistics and gray level co-

occurrence matrix, in magnetic resonance images. The magnetic resonance 

feature image used for the tumor detection consists of T2-weighted magnetic 

resonance images for each axial slice through the head. To remove the 

unwanted noises in the magnetic resonance image, median filtering is used. 

First order statistics and gray level co-occurrence matrix-based features are 

extracted. Finally, k-nearest neighbor, artificial neural network, support 

vector machine and convolutional neural networks are used to classify the 

brain tumor images. The application of the proposed method for tracking 

tumor is demonstrated to help pathologists distinguish its type of tumor. A 

classification with an accuracy of 89%, 90%, 91% and 95% has been 

obtained by, k-nearest neighbor, artificial neural network, support vector 

machine and convolutional neural networks. 
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1.  Introduction 

 

Brain tumor is often a group of abnormal cells due to loss of normal aging and cell death. It may occur in any 

individual at almost any age. It may also differ from one treatment session to another; however, its effects will not be 

the same for each person. Brain tumors appear at any place, in different image intensities, can have a number of sizes 

and shapes. Brain tumors can be benign or malignant; it is categorized according to World Health Organization 

(WHO) as neuroepithelial tumors, non-neuroepithelial tumors, mutations leading to astrocytic tumors and astrocytic 
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lineage tumor grading systems. In this particular research work astrocytoma, medulloblastoma, glioma, glioblastoma 

multiforme and craniopharyngioma type of brain tumors are utilized. 

There are many computer-aided classification systems for Magnetic Resonance (MR) and Computed 

Tomography (CT) brain images in the literature, most of them are used to detect and classify abnormalities. Dipali et 

al. (2010) proposed a method to detect and classify astrocytoma tumor in MR brain images using thresholding and 

ANN classifier. Ahmed et al. (2010), proposed a method using wavelet-based texture features. The optimum features 

are selected using genetic algorithm and given to support vector machine for efficient classification of brain MR 

images with high sensitivity 94%, specificity 100% and accuracy 96%. Fazel Zarandi et al. (2011), proposed a 

method for classification of different grades in astrocytoma tumor. Tumor region is segmented using possibilistic c-

means method and feature extraction is done by thresholding method. Finally, approximate reasoning is used to 

classify the tumor grade in brain MRI. The results showed that the proposed system is superior in classifying the 

brain tumor and its grade than type I fuzzy expert system. 

Chawla et al. (2009), proposed a method to detect and classify the types of stroke in brain CT images. Doi 

(2005), gave a survey of current status and future potential of computer-aided diagnosis in medical imaging. Gong et 

al., (2011), proposed a method to classify traumatic brain images using ROI labelling and atlas-based classification. 

Padma & Sukanesh (2011), proposed a method to classify and segment CT brain tumour images by using optimal 

dominant gray level run length texture features. It was compared with wavelet-based texture feature extraction 

method and spatial gray level dependence matrix method. The optimal features were selected using genetic 

algorithm. The selected features were fed to the support vector machine (SVM) classifier to classify and segment the 

tumour brain CT images. The classification accuracy was 98%. Zhang et al. introduced a method based on the 

features of gray scale, shape and texture, and the symmetric feature human brain CT image is classified (Zhang & 

Wang, 2007). Inductive learning techniques, see 5 and radial basis function of nerve network, were used to build 

classifiers.  

Hema Rajini & Bhavani (2014), proposed a new approach to classify the normal and abnormal images of CT. 

The proposed method consists of four stages namely pre-processing, feature extraction, feature reduction and 

classification. The discrete wavelet transform coefficients are the features extracted in this method. The essential 

coefficients are selected by the principal component analysis. A classification with a success of 92%, 97% and 98 % 

has been obtained by artificial neural network, k-nearest neighbour and support vector machine, respectively.  

The rest of this paper is organized as follows. Section 1 presents the introduction as well as the studies of several 

research papers are portrayed. Section 2 presents the proposed technique, utilized in this work for classification of 

astrocytoma, medulloblastoma, glioma, glioblastoma multiforme and craniopharyngioma type MR brain images. In 

this section, pre-processing, feature extraction and classification are presented. Section 3 experimentally 

demonstrates the performance of the proposed method. Finally, Section 4 describes the conclusion of this paper. 

 

 

2.  Materials and Method 

 

Materials 

 

The data set of brain MR image was collected from Rajah Muthaiah Medical College Hospital (RMMCH) in 

Chidambaram to develop our algorithm. The field of view (FOV) is 240mm. Each image is 512 × 512 pixels in size. 

The proposed system is experimented and tested using 26 positive cases. The thickness of brain MR image is 5 mm. 

All are performed on a 1.5 T MR scanner (Intera Release 11, Philips medical systems, Nederland B.V). Consecutive 

Digital Imaging and Communications in Medicine (DICOM) MR slices are imported into the Mat lab workspace 

automatically.  

 

Proposed Method 

 

This proposed research work is used to improve brain tumor classification in brain MR images. The proposed 

method has three stages, namely pre-processing, feature extraction and classification. The proposed technique for 

automatic MR brain tumor image classification is illustrated in Figure 1. The proposed system is developed using 

Matlab (The Math Works, Inc., Natick, MA, USA). In the first stage, noise is suppressed using an image filtering. In 

the second stage first order statistics and gray level co-occurrence matrix-based features are extracted. Finally, KNN, 

ANN SVM and CNN classifiers are used to classify the type of tumor images.   
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a) Pre-processing  

 To reduce noise, median filtering using a 3-by-3 square kernel is applied (Fazel Zarandi et al., 2011). Median 

filter is chosen because it is less sensitive to extreme values and able to remove outliers without reducing 

sharpness of the image. This produces a more homogeneous background in which abnormalities become more 

conspicuous. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Methodology of the proposed technique 

 

b) Texture Features from Gray Level Co-occurrence Matrix  

Texture is a repeating pattern of local variations in image intensity. The co-occurrence matrix is a statistical 

method used for texture analysis. As the name suggests, the co-occurrence matrix is constructed from the image 

by estimating the pair wise statistics of pixel intensity. The use of the co-occurrence matrix is based on the 

hypotheses that the same gray-level configuration is repeated in a texture. This pattern will vary more by fine 

textures than by coarse textures. The co-occurrence matrix P (i, j|d, θ) counts the co-occurrence of pixels with 

gray values i and j at a given distance d and in a given direction θ. According to the number of intensity points 

(pixels) in each combination, statistics are classified into first-order, second-order and higher-order statistics.  In 

the first order, texture measures are statistics calculated from an individual pixel and do not consider pixel 

neighbor relationships. The gray level co-occurrence matrix (GLCM) method is a way of extracting second order 

statistical texture features (Haralick et al., 1973). However, the performance of a given GLCM based feature, as 

well as the ranking of the texture features; depend on the number of gray levels used. We use the following 

notation: µ is the mean value of P. μx, μy, σx and σy are the means and standard deviations of Px and Py. G is the 

size of the co-occurrence matrix. Here the number of rows and columns of the co-occurrence matrix is equal. In 

this work mean, standard deviation, skewness and kurtosis are the first order statistics features. The following 

GLCM based texture features are extracted in this research work: contrast, correlation, energy, homogeneity and 

entropy. They are defined in eqs. (1)-(5).  

 

  Contrast  

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ 𝑛2 {∑ ∑ 𝑃(𝑖, 𝑗)

𝐺

𝑗=1

𝐺

𝑖=1

} , |𝑖 − 𝑗| = 𝑛

𝐺−1

𝑛=0

                                                                                                             (1) 

 

Contrast is a measure of the local variations present in an image. This measure of contrast favors contributions 

from P (i, j) away from the diagonal, i.e. i= j. If there is a large amount of variations in an image, the P[i,j]’s will 

be concentrated away from the main diagonal and the contrast will have a high value. 

Correlation 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ ∑
{𝑖 × 𝑗} × 𝑃(𝑖, 𝑗) − {𝜇𝑥 × 𝜇𝑦}

𝜎𝑥 × 𝜎𝑦

𝐺−1

𝑗=0

𝐺−1

𝑖=0

                                                                                                      (2) 

 

Correlation is a measure of gray level linear dependence between the pixels at the specified positions relative to 

T2-Weighted MR image (Tumor) 

 

 

 

 

 

 

 

Classifiers: KNN, ANN, SVM and CNN 

 

Feature extraction  

 

Pre-processing: Noise removal 
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each other. The correlation will be higher if an image contains a considerable amount of linear structure. 

 

Energy 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ ∑ 𝑝(𝑖, 𝑗)2

𝐺−1

𝑗=0

𝐺−1

𝑖=0

                                                                                                                                                      (3) 

 

The energy of a texture describes the uniformity of the texture. Energy is 1 for a constant image. 

 

Homogeneity 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑ ∑
𝑃(𝑖, 𝑗)

1 + |𝑖 − 𝑗|

𝐺−1

𝑗=0

𝐺−1

𝑖=0

                                                                                                                                   (4) 

 

Homogeneity returns a value that measures the closeness of the distribution of elements in the GLCM to the 

GLCM diagonal.  Homogeneity is 1 for a diagonal GLCM. A homogeneous image will result in a co-occurrence 

matrix with a combination of high and low P [i,j]’s.  A heterogeneous image will result in an even spread of P 

[i,j]’s. 

 

Entropy 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ ∑ 𝑃(𝑖, 𝑗) × 𝑙𝑜𝑔(𝑃(𝑖, 𝑗))                                                                                                                       (5)

𝐺−1

𝑗=0

𝐺−1

𝑖=0

 

 

Entropy statistic measures the disorder or complexity of an image. Complex textures tend to have high entropy. 

Entropy is strongly, but inversely correlated to energy.  

 

c) Classifiers: KNN, ANN, SVM and CNN 

Classification is the process of classifying the given input by training with a suitable classifier. Deep learning and 

Support Vector Machine (SVM) classifiers are the best classifiers suggested by many researchers which can be 

opted for the brain tumor classification of MR images. It is independent of dimensionality and feature space. 

Convolutional Neural Networks (CNN) is one of the most remarkable approaches of deep learning, in which 

multiple layers of neurons are formed in a robust manner. In this work simple classifiers like KNN and ANN are 

also used. 

k-Nearest neighbor classifier: One of the simplest classification techniques is the k-nearest neighbor (k-NN) 

classifier. Classification of the input feature vector X is done by determining the k closest training vectors 

according to a suitable distance metric. Vector X is then assigned to that class to which the majority of that k-

nearest neighbors belong. The k-NN algorithm is based on a distance function and a voting function in k-nearest 

neighbors; the metric employed is the Euclidean distance measure (Cover & Hart, 1967). The k-NN classifier is a 

conventional nonparametric supervised classifier that is said to yield good performance for optimal values of k. 

Like most learning algorithms, k-NN algorithm consists of a training phase and a testing phase. Data points are 

given in an n-dimensional space in the training phase. The labels associated with the data points designate their 

class in the training phase. In the testing phase, unlabeled data are given and the algorithm generates the list of 

the k-nearest (already classified) data points to the unlabeled point. This classifier returns the class of the majority 

of that list. 

Artificial Neural Network Classifier: An ANN is a mathematical model consisting of a number of highly 

interconnected processing elements organized into layers, geometry and functionality of which have been 

resembled to that of the human brain. The ANN may be regarded as a massively parallel distributed processor 

that has a natural propensity for storing experiential knowledge and making it available for use (Baxt, 1995). The 

cascade-forward back propagation network which was employed as the classifier required in this study had two 

layers (after several trails for different hidden layers with a different number of neurons). The first layer consists 

of 14 input elements in accordance with the 9 feature vectors selected from the texture features by first order 

statistics and GLCM. The number of neurons in the hidden layer is ten and thirty. The single neuron in the output 

layer is used to represent the type of brain tumor. The neural network has been trained to adjust the connection 
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weights and biases in order to produce the desired mapping. In this stage, the feature vectors are applied as an 

input to the network and the network adjusts its variable parameters, the weights and biases, to capture the 

relationship between the input patterns and outputs. 

Support Vector Machine Classifier: Support vector machine (SVM) is a powerful supervised classifier and 

accurate learning technique. From the statistical theory it was derived and developed by Vapnick in 1982. It 

yields successful classification results in various application domains, e.g. medical diagnosis. SVM is based on 

the structural risk minimization principle from the statistical learning theory (Cristianini & Shawe Taylor, 2000). 

The kernel controls the empirical risk and classification capacity in order to maximize the margin between the 

classes and minimize the true costs. SVM searches an optimal separating hyper-plane between members and non-

members of a given class in a higher dimensional feature space. The inputs to the SVM algorithm are the features 

extracted from first order statistics and GLCM. In our method, multi classes are astrocytoma, medulloblastoma, 

glioma, glioblastoma multiforme and craniopharyngioma type of brain tumors.  

Convolutional neural networks: CNNs achieve better classification accuracy on large scale datasets due to 

their capability of joint feature and classifier learning (Shen et al., 2015). The convolutional layer plays a vital 

role in the operation of CNN. The layers parameters focus around the use of learnable kernels. These kernels are 

usually small in spatial dimensionality, but spreads along the entirety of the depth of the input. When the data hits 

a convolutional layer, the layer convolves each filter across the spatial dimensionality of the input to produce a 

2D activation map. 

The fully-connected layer contains neurons of which are directly connected to the neurons in the two adjacent 

layers, without being connected to any layers within them. This is analogous to way that neurons are arranged in 

traditional forms of ANN. Pooling layers reduce the dimensionality of the representation, and thus further reduce 

the number of parameters and the computational complexity of the model. 

 

 

3.  Results and Discussion 

 
We have collected 26 cases of brain tumor from the Department of Radiology, Rajah Muthiah Medical College 

Hospital (RMMCH), Chidambaram. All the input data set used for tumor detection consisted of T2-weighted of 

512×512 MR brain images. The MR brain images collected from the patients were acquired on 1.5 Telsa, Intera MR 

Scanners. This section portrays some experimental results on real data on brain MRI. The number of MR brain 

images in the input data set is 110 abnormal brain images of astrocytoma, medulloblastoma, glioma, glioblastoma 

multiforme and craniopharyngioma. The abnormal brain image set consists of images of brain affected by a brain 

lesion. In the first stage, noise is suppressed using an image filtering. The input MR brain images for astrocytoma, 

medulloblastoma, craniopharyngioma, glioma and glioblastoma multiforme are shown in Figure 2 (a-e). In the 

second stage, features are extracted from first order statistics and GLCM. In this research work, nine features are 

extracted. They are mean, standard deviation, skewness and kurtosis of the first order statistics features. The GLCM 

based texture features are contrast, correlation, energy, homogeneity and entropy.  

Finally, KNN, ANN, SVM and CNN are used to classify the type of tumor images.  We evaluate the performance 

of the classifiers in terms of sensitivity (also called recall  in some fields), specificity and accuracy. The formulae for 

these are given in eq. (6) and eqs. (7)-(8). The three terms are defined as follows: Sensitivity (true positive fraction) 

is the probability that a diagnostic test is positive and it states that the person has the tumor disease, Specificity (true 

negative fraction) is the probability that a diagnostic test is negative and that the person does not have the disease. 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Precision_and_recall#Definition_.28classification_context.29
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Figure 2. Input MR brain images (a-e) 
  

Table 1 

GLCM Features of test samples 

 

Image 

No. 

GLCM Feature  

Contrast Correlation Energy Homogeneity Entropy 

1 0.008566 0.97740 0.6123 0.995717 2.38500 

2 0.005587 0.968634 0.8163 0.997207 2.98339 

3 0.005338 0.978297 0.7487 0.997331 2.77234 

4 0.005214 0.976312 0.7746 0.997393 2.91287 

5 0.006642 0.973369 0.7439 0.996679 2.68715 

6 0.005742 0.983522 0.6463 0.997129 2.05357 

7 0.008752 0.956693 0.7892 0.995624 2.57759 

8 0.004593 0.969224 0.8461 0.997703 2.77483 

9 0.009621 0.976871 0.5744 0.99518 2.23901 

10 0.00748 0.982728 0.5598 0.99626 2.81441 

11 0.0072 0.980558 0.6224 0.99640 3.11189 

12 0.00807 0.977549 0.6325 0.99596 3.16398 

13 0.00987 0.974196 0.6077 0.99506 2.65219 

14 0.013532 0.969236 0.5467 0.99323 2.42520 

15 0.015456 0.9312 0.7601 0.99227 2.70700 

 

Table 2  

First Order Statistics Features of test sample 

 

Image 

No. 

First Order Statistics Feature 

Mean Standard Deviation Skewness Kurtosis 

1 0.006 0.01080. 2.017780 6.76021 

2 0.013 0.01896 1.384442 3.37708 

3 0.009 0.01276 1.655632 4.73059 

4 0.011 0.01323 1.244131 3.33805 

5 0.011 0.01910 2.274177 7.10785 

a b c 

d e 
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6 0.006 0.01030 1.605176 4.28244 

7 0.008 0.01071 1.578003 4.13867 

8 0.010 0.01203 0.826578 2.47775 

9 0.011 0.01429 0.945757 2.65592 

10 0.010 0.00814 0.419944 2.28365 

11 0.014 0.01945 2.495946 12.0050 

12 0.012 0.01388 1.159288 3.16243 

13 0.014 0.02124 2.216729 9.24762 

14 0.008 0.01097 1.308686 4.27185 

15 0.009 0.01377 2.758114 11.6741 

 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑜𝑟 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                       (6) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                                                                                                               (7) 

 

Accuracy is the probability that a diagnostic test is correctly performed. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁  
                                                                                                                          (8) 

 

 

A classification with an accuracy of 89%, 90%, 91% and 95% has been obtained by, k-nearest neighbor, artificial 

neural network, support vector machine and convolutional neural networks. The proposed method has been 

evaluated on a data set of 26 patients. The classification performance of the proposed method is tested at slice level. 

The performance of our algorithm is excellent. The application of the proposed method for tracking tumor is 

demonstrated to help pathologists distinguish its type of tumor. GLCM and first order statistics feature values are 

given in Table 1 and 2. Table 3 presents the performance of classifiers at the slice level. 

 

Table 3 

Classification Accuracy for the used classifiers 

 

Classifier KNN ANN SVM CNN 

Accuracy 89% 90.11% 91.11% 95% 

Error 11% 7.89% 8.89% 5% 

 

 

4.  Conclusion 

 

Thus, an automated method for classification of five different types of tumors in brain MR images based on first 

order statistics and gray level co-occurrence matrix is developed. This system has been successfully tested on large 

brain images causing brain tumor. The proposed system helps the physicians to know about the type of brain tumors, 

for further treatment. A classification with an accuracy of 89%, 90%, 91% and 95% has been obtained by, k-nearest 

neighbor, artificial neural network, support vector machine and convolutional neural networks. The system can be 

designed to classify other types of cancers as well with few modifications. 
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