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 The present work was developed, in the steam generation system of a canned 

tuna canning plant in Ecuador, in which an exergoeconomic and ecological 

efficiency analysis was applied in combination, with a view to identifying and 

quantifying the irreversibility’s existing in the process under study, and 

evaluate the environmental impact produced by the fuel used by this type of 

facility. The methodology used combined from the literature consulted, the 

analysis of conventional exergy and exergoeconomic with the ecological 

efficiency. The results obtained were: the greater destruction of exergy was 

caused by the steam boiler (with more than 98% of the whole system) for an 

exergy efficiency of 25.12%; the unit thermoeconomic cost of steam generated 

by the system is $ 28.07 / Gj; and the ecological efficiency of the steam 

generator of the industrial plant is 46.27%, with the use of fuel oil 6 as fuel and 

a thermal efficiency of 84.91%. These results show the need to increase the 

parameters of steam generation (pressure and temperature), as well as to 

evaluate the possibility of using other fuel alternatives, to improve the 

energetic and ecological effects of the tuna plant under study. 
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1.  Introduction 

Today, most of the energy used by the food industry is provided through non-renewable resources such as fossil 

fuels; However, the rapid depletion of these and their fluctuations in prices worldwide, have required the search 

for tools that contribute to the efficient use of energy in industries [1]. On the other hand, the extensive use of fossil 

fuels generates greenhouse gas emissions (CO, CO2, SOx, and NOx) and subsequent environmental concerns [2]. 
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In the canned tuna canning process, steam is the most suitable means of transporting the heat demanded by the 

different processes, such as cooking, packing, sterilizing and labeling, to convert the tuna into a finished product 

[3] , so the steam generation plant is considered a key system, whose function is vital in the production process [4], 

[5]. 

Given the contaminating nature of fossil sources, it is necessary to reduce the consumption of these energy 

carriers, based on the optimization and periodic evaluation of existing technologies and the design of others [6], 

for which the exergoeconomic analysis is a useful tool for industrial energy systems, when improvements are 

sought related to energy consumption and emissions, allowing to identify and quantify inefficiencies and 

irreversibilities that occur in energy conversion processes [7], [8]. This would result in fuel savings and lower 

environmental impact [4]. 

The use of fossil fuels in the steam production process has a high environmental cost if one takes into account 

that they come from non-renewable sources. This situation, together with the large number of installed equipment 

with high degrees of oversizing and low efficiency, cause that the generation of steam contributes negatively to the 

environmental impact due to CO2 emissions [9], which is why it is done necessary, to carry out studies on the 

impact of greenhouse gas emissions generated by industrial activity. In this context, ecological efficiency emerges 

as a parameter that contributes to perfecting current production technologies [10], [11]. 

Within the bibliographies reviewed, different investigations have been carried out, which demonstrate the 

importance of exergoeconomic and ecological efficiency analysis in the different sectors of the industry [12], [7] 

[11], [13], [14], [15], [8], [16]; however, in the tuna industry only works have been found on the tuna life cycle 

[17] [3] and the exergy analysis of its production process [18], but none that perform exergo-economic analysis 

and ecological efficiency of the system complete or the steam generation subsystem, which is essential to contribute 

to the reduction of the use of energy carriers, as well as the emissions of polluting gases, aspects that represent 

today a problem that concerns humanity. For this reason, the objective of this work is to apply a combination of an 

exergoeconomic and ecological efficiency analysis, to the steam generation system of a canned tuna canning plant 

in Ecuador, with a view to contributing to the continuous improvement of its exergetic and ecological efficiency. 

This work is part of a project financed by the Ecuadorian government, through its scholarship program of the 

National Secretariat of Science, Technology, and Innovation (SENESCYT), and was carried out in one of the 

transnational companies processing canned tuna in cans in the Republic of Ecuador 

 

2.  Research Methods 

For the realization of the present work the values of the thermal parameters of the steam and the water were 

taken, in the different points of the steam generation and distribution system, according to the methodology 

proposed [22]. Regarding the energy and exergy analyzes were carried out applying a methodology that consists 

of two main stages, described in this article 

Description of the plant 

In this paper, the steam generation and supply system of an existing industrial plant for canned tuna canning 

are analyzed, where the main function of the energy system is the production of saturated steam at the pressure of 

8.728bar. The entire system is divided into 19 main components interconnected with 34 fluid streams. The system 

consists of 2 main subsystems, the water supply, and the fuel subsystem. The scheme of the system, its components, 

and the currents are illustrated in Figure 1, which shows the flow diagram of the steam generation and supply 

system of the industrial plant under study. 

To carry out the study, the values of the steam and water parameters were taken at the different points of the 

steam generation and supply system, especially the entry and exit of each element, from which they were carried 

out. the analyzes applying a methodology that consists of two main stages. 
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Figure 1. Flow diagram of the generation system 

 

Stage 1. Analysis of conventional exergy and exergoeconómico 

The analysis of conventional exergy and exergoeconomic was carried out using the first and second law of 

thermodynamics, following the methodology proposed  [19] and used in different studies conducted in the industrial 

sector [4], [20], [8], [16]. For the measurement of the thermodynamic parameters of the system, it was considered 

that the operation of its components was in a stationary state. The applied methodology starts from a mass balance, 

followed by an energy balance developed according to the first law of thermodynamics, the final exergy and 

thermoeconomic balances were developed by the method exposed by [21] in the literature, shown in the equations 

(1 and 2). 

 

𝐸̇𝐹𝛾𝑘
= 𝐸̇𝑃𝛾𝑘

+ 𝐸̇𝐿𝛾𝑘
+ 𝐸̇𝐷𝛾𝑘

   (1) 

 

𝐶̇𝑃𝛾𝑘 = 𝐶̇𝐹𝛾𝑘 + 𝑍̇𝑘
𝐶𝑙
+ 𝑍̇𝑘

𝑂𝑀
   (2) 

 

One of the essential assumptions is that the cost rate of each flow (j) is calculated according to the exergy value as 

observed in equation (3). 

 

𝐶̇𝑗 = 𝑐̇𝑗𝐸̇𝑗    (3) 
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One of the most important criteria for the evaluation of the system or components from the thermodynamic 

point of view is the exergetic efficiency, defined as the ratio of the exergy values of product to fuel, as shown in 

equation (4). 

 

𝜀𝑘 =
𝐸̇𝑃,𝑘

𝐸̇𝐹,𝑘
=

𝐸̇𝑃,𝑘

𝐸̇𝑃,𝑘+𝐸̇𝐿,𝑘+𝐸̇𝐷,𝑘
= (1 +

𝐸̇𝐿,𝑘+𝐸̇𝐷,𝑘

𝐸̇𝑃,𝑘
)
−1

   (4) 

 

A useful variable for the comparison of dissimilar components is the destruction rate of exergy defined in 

equation (5). 

 

𝑦
𝐷,𝑘

=
𝐸̇𝐷,𝑘

𝐸̇𝐹,𝑡𝑜𝑡
   (5) 

This ratio is a measure of the contribution of the destruction of the exergy of component k to the reduction of 

total exergy efficiency. 

 

Stage 2. Ecological efficiency analysis 
The ecological efficiency analysis was carried out using the methodology proposed by Cardu M. & Baica M. 

[10] and applied to different industrial processes by several authors [12], [11], taking into account the modification 

proposed by Coronado [14] for the calculation of ecological efficiency. 

The methodology applied for the determination of ecological efficiency evaluates the amount of pollutant in 

the steam generation and supply system of the industrial plant under study, considering the polluting emissions per 

Kg of fuel used. This efficiency is between 0 and 1; where an ecological efficiency equal to 0 means 100% of 

environmental impact or high pollutant, and an efficiency equal to 1 means 0% of the environmental or non-

polluting impact. Cardu, M. & Baica, M. [10] introduced the concept of equivalent carbon dioxide (CO2) e, based 

on the maximum allowed concentration for CO2, which is 10,000 mg / m3. The equivalent coefficients for some 

pollutants in kg per kilogram of fuel (kg/kg of fuel), called global warming potential (GWP), are related according 

to equation (6). 

 

2 2 2( )e 1,9( ) 1000( ) 666( ) 222( )xCO CO CO NO SO PM    
  (6) 

 

The cited authors themselves propose an indicator to quantify the environmental impact, which is defined as the 

ratio between the carbon dioxide equivalent of the fuel and its lower heating value. This indicator is called the 

pollution indicator represented by Пg, equation (7). 

 

Π𝑔 =
(𝐶𝑂2)𝑒

𝐿𝐻𝑉
  (7) 

 

Where: 

(CO2) eequivalent of carbon dioxide (kg / kg of fuel);  

LHVinferior calorific value of the fuel (MJ / kg of fuel);  

Пgindicator of contamination (kg / MJ). 

 

Based on the assumption that the best fuel is the one with the lowest pollution indicator, they propose a more 

complex and dimensionless index that expresses the ecological component of the polluting gases emitted into the 

atmosphere by the combustion of a certain fuel in the atmosphere. comparison with the useful energy produced in 

thermal power plants. The proposed indicator is called ecological efficiency (ε), like equation (8). 

 

 

𝜀 = [
0.204×𝜂𝑠𝑦𝑠𝑡𝑒𝑚

𝜂𝑠𝑦𝑠𝑡𝑒𝑚+𝜋𝑔
× ln⁡(135 − Π𝑔)]  (8) 
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For their part [14] they propose and argue a modification to the ecological efficiency formula originally 

presented by Cardu, M. & Baica, M. [10], for the cases in which the cooking is carried out in small boilers such as 

the tuna industry, taking into account that the values of the dimensionless coefficients depend on the process 

analyzed by Ferreira, J. and other authors [23]. For this reason, the following equation (9) is assumed for the 

calculation of ecological efficiency. 

 

𝜀 = [0.2 ∙
𝜂

𝜂+Π𝑔
∙ 𝑙𝑛⁡(145.6 − Π𝑔)]

1.9

  (9) 

 

3.  Results and Analysis 

3.1 Results of stage 1 of analysis of conventional exergy and exergoeconomic 

The thermodynamic parameters of the 34 flow streams are presented in table 1, the input data for the calculation 

of the thermodynamic parameters of the selected currents were obtained from in situ measurements. The results of 

thermodynamic, exergnetic and exergo-economic analyzes for all currents are presented in table 1. The input data 

for the calculation of pressures and temperatures were obtained from in situ measurements. Fuel costs (Fuel Oíl # 

6), electric power and water were taken from the official rates in force in the Republic of Ecuador, it was also 

considered that the cost of air provided is zero. Operating and maintenance costs were calculated using the annual 

operating and maintenance real costs assuming 5808 hours of operation per year. Chemical exergy values are 

included for all fuel flows because they are significant, but not in the water and steam flows that are insignificant 

values that were omitted. 

To solve the defined system of mathematical equations, software for solving equations was used. The results of 

the exergy analysis and the exergoeconomic evaluation at the component level for the real operating conditions are 

presented in table 1. 

 

Table 1 

Thermodynamic, exergytical and exergo-economic analysis of each steam generation system stream 

 

Flow 
mj 

(kg/s) 

pj  

(bar) 

tj 

(ºC) 

hf 

(kj/kg) 

sj 

(kj/kgK) 

Ej 

(kW) 

cj  

($/h) 

cCj 

($/GJ) 

GVA1 1,08 1,01 40 167,61 0,572 1,651 3,14 528,3 

GVA2 1,11 1,01 52,7 220,71 0,738 5,6 4,99 247,7 

GVA3 1,11 10,45 53 222,77 0,742 6,761 5,87 241,2 

GVV1 0,97 8,72 174 2771,8 6,632 776,8 0,02 26,91 

GVV2 0,01 8,72 174 2771,8 6,632 3,775 0,38 28,07 

GVV2´ 0,01 8,67 174 2745,2 6,575 3,73 0,38 28,41 

GVV2´´ 0,01 3,01 143 2745,2 7,039 3,076 0,38 34,44 

GVV3 0,01 8,72 174 2771,8 6,632 9,526 0,96 28,07 

GVV3´ 0,01 7,82 170 2668 6,492 9,032 0,96 29,6 

GVV3´´ 0,01 3,01 134 2668 6,899 7,578 0,96 35,28 

GVV4 0,02 8,72 174 2771,8 6,632 18,317 1,85 28,07 

GVV4´ 0,02 8,64 174 2727,1 6,536 17,946 1,85 28,65 

GVV4´´ 0,02 2,51 132 2727,1 7,578 14,25 1,85 36,06 

GVV5 0,01 8,72 174 2771,8 6,632 4,337 0,42 28,07 

GVV5´ 0,01 8,71 174 2745,2 6,602 4,31 0,42 28,24 

GVV5´´ 0,01 2,01 145 2745,2 7,251 3,259 0,42 37,35 

GVV6 0,92 8,72 174 2771,8 6,632 736,96 0,02 28,07 

GVP 0,13 8,72 174 736,8 2,081 16,06 0 0 



IRJEIS ISSN: 2454-2261    

Linzan, Ángel R. A., Sauvanell, Ángel L. B., & Parra, M. I. F. (2018). Exergoeconomic and ecological efficiency 

analysis of steam generation system in ecuadorian tuna industry. International Research Journal of Engineering,  

IT & Scientific Research, 4(2), 52-62. https://sloap.org/journals/index.php/irjeis/article/view/92 

57 

GVC1 0,01 8,72 174 736,8 2,081 0,592 0 0 

GVC2 0,01 3,01 134 562,1 1,673 0,32 0 0 

GVC3 0,01 3,01 134 562,1 1,673 0,8075 0 0 

GVC4 0,01 2,01 120 505,6 1,532 0,2891 0 0 

GVF1 0,07 1,01 40 73,52 ---  3220,9 59,29 5,113 

GVF2 0,07 1,01 54,8 102,8 ---  3221,1 60,26 5,198 

GVF3 0,07 10,71 55 103,2 ---  3221,1 60,91 5,254 

GVF3´ 0,07 1,01 42 77,41 ---  3220,9 60,91 5,255 

GVF4 0,16 1,03 52,8 98,74 ---  7152,9 136,73 5,31 

GVF5 0,16 6,9 53 99,15 ---  7152,9 136,8 5,313 

GVF6 0,16 5,49 80 155,1 ---  7154,2 137,3 5,329 

GVF7 0,09 5,49 80 155,1 ---  3932,5 75,46 5,329 

GVF7´ 0,09 1,01 55 103,2 ---  3931,8 75,46 5,33 

GVF8 0,07 5,49 80 155,1 ---  3221,7 61,81 5,329 

GVA 1,94 1,01 30 417,99 ---  3,361 0 0 

GVGC 2,03 1,01 200 5836 ---  159,5 0 0 

 

The results of the conventional exergy analysis and the exergoeconomic evaluation of each component of the 

system for the real operating conditions are presented in table 2. 

 

Table 2 

The result of the conventional exergetic and exergoeconomic analysis of each component of the system 

 

Component (K) 

Conventional exergy 

analysis 
Exergoeconomic performance evaluation 

EF,k  

(kW) 

EP,k 

 (kW) 

ED,k  

(kW) 

εK 

(%) 

YDK  

(%) 

Zk  

($/h) 
CDk ($/h) 

TD 15,91 5,60 10,31 35,21 0,316 0,02 3,191 

VR_TD 17,95 14,25 3,69 79,43 0,113 0 0,367 

BA 2,28 1,16 1,12 53,17 0,034 0,14 0,101 

GV 3066 770,10 2311,9 25,12 70,94 6,10 44,63 

VR_TAC 9,03 7,58 1,46 83,90 0,045 0 0,15 

TAC 6,77 0,21 5,55 3,14 0,17 0,03 0,76 

BC1 0,03 0,003 0,026 58,89 0,0008 0,01 0,002 

VR_TDC 3,73 3,08 0,65 82,48 0,019 0 0,065 

TDC 2,76 0,109 2,65 3,96 0,081 0,02 0,23 

BC2 0,07 0,007 0,06 67,94 0,0018 0,01 0,035 

VR_PC 4,31 3,26 1,05 75,61 0,032 0 0,103 

PC 2,97 1,338 1,63 45,05 0,05 0,01 0,23 

DV1 776,80 772,90 3,9 99,50 0,12 0,01 0,248 

GVV4-GVV4' 18,32 17,95 0,37 97,98 0,011 0 0,030 

GVV3-GVV3' 9,53 9,03 0,5 94,82 0,015 0 0,044 

GVF3-GVF3´ 3221 3220,8 0,02 99,99 0,0006 0 0,001 

GVF7-GVF7´ 3932,57 3931,8 0,77 99,98 0,024 0 0,003 

GVV2-GVV2´ 3,78 3,73 0,05 98,67 0,0015 0 0,004 

GVV5-GVV5´ 4,34 4,31 0,03 99,39 0,0009 0 0,002 

Energy supplied 3258,89 737 2345,74 22,62 71,976 6,35   
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3.2 Results of stage 2 of ecological efficiency analysis 

The use of the methodology of ecological efficiency in the present study, allowed to quantify the environmental 

impact of the steam generator of the system of the industrial plant for canned tuna canning object of study. The 

results of the polluting emissions of Fuel Oil # 6 used as fuel for steam generation by the system are presented 

below in Table 3. 

 

Table 3 

Resultado de las emisiones contaminantes del Fuel Oil # 6 

 

Emission of fuel  

contaminants (kg/kg) 

Fuel Oil 

(CO2) e 16,94 

PM 1,98x10-4 

NOx 1,238x10-2 

CO                                                                                                 SO2 6,05x10-3                          

3,09x10-3                           

CO2 2,54 

Total (Kg/Kg de Fuel) 2,555 

Ecological Efficiency (%) (Efficiency of the 

boiler = 84,91%) 

46,27 

 

3.3 Discussion of the results of the first stage of analysis of conventional exergy and exergo-economics 

The heat exchangers of the fuel storage tank (TAC) and the daily fuel tank (TDC), obtained the lowest exergy 

performance of the system, 3.14%, and 3.96% respectively, results that correspond to those achieved by Vučković, 

GD and other authors [8]. They are the consequence of the 2 main sources of irreversibilities that exist in this type 

of components: the heat conduction in the finite temperature differences and the flow friction infinite pressures 

[24]. 

Exergy losses are mainly related to exhaust gases and the transfer of exergy to the environment. Of the total 

exergy losses, the exhaust gas loss is 90.54% or 159.5 kW. All losses of exergy represent 5.47% or 176.154 kW of 

the exergy of fuel supplied to the system. In the components of the system, 72.82% of the exergy of the input fuel 

is destroyed or 2345.74 kW. The values for the exergy destruction ratio indicate that the boiler has the greatest 

impact on the reduction of the exergy efficiency of the global system, that is, 70.94%. The exergy destruction of 

the other components reduces the exergy efficiency of the general system by just 1.036%. 

The circulation pumps (BF1; BF2; BA1) have the greatest improvement potential (%) using the best available 

technology (more than 80%), but the absolute values of exergy destruction of them are very low (0.026, 0, 06 and 

1.2 respectively). The exergetic destruction in the de-aerator (10.31 kW) is mainly caused by differences in 

temperature and pressure of the water streams that mix. At the discretion of [8] these thermodynamic inefficiencies 

can be completely avoided if the feed water and steam enter the same temperature and pressure, considering this 

component of the system isolated. The components of the system with the highest values of the sum Zk + CDk are 

the steam generator (GV) and the water deaerator (TD), with 50.73 ($ / h) and 3.21 ($ / h) respectively, which is 

mainly due to the cost of the exergy destruction of each of these components, which constitutes the dominant impact 

in the exergoeconomic evaluation [8]. 

The exergy efficiency of the boiler reached a value of 25.12%, similar to that described in other studies [25], 

[26]. The low exergy efficiency can be attributed to the heat transfer that occurs in the boiler under a sharp 

temperature difference between the gases and the working substance, in addition to the combustion process, which 

is the major contributor in the destruction of exergy due to the mixture of substances of different natures and with 

different concentrations and temperatures [6]. The exergy efficiency of the system was 22.62%. 

 

 

 

3.4 Discussion of the results of the second stage of ecological efficiency analysis 

EL TOTAL 176,154       
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For the steam generation system of the plant, with the use of Fuel Oil # 6 as fuel and thermal efficiency of 

84.91%, an ecological efficiency of 46.27% was obtained, results similar to those achieved by [14] for boilers that 

use fuel oil for the production of steam, which shows the negative environmental impact of the use of this type of 

fuel, and reaffirms the need to assess the possibility of using other fuels that have a greater ecological efficiency 

demonstrated according to different authors [10], [14], [23], considering it a feasible option for the case of the tuna 

industry, those proposed by [14] in their study 

 

4.  Conclusion 

The greater destruction of exergy in the system is caused by the steam boiler, destroying more than 98% of the 

exergy of the whole system, for an exergy efficiency of 25.12%, which was evidenced in the conventional exergy 

analysis , identifying it as the main component of the system to be the subject of an improvement plan. These 

results could be improved by increasing the steam generation parameters (pressure and temperature). Through the 

exergo-economic evaluation it was determined that the unit thermoeconomic cost of the steam generated by the 

steam generation system of the tuna canning plant under study was $ 28.07 / Gj, a value close to those found for 

[8; 16] of 22.82 euros / Gj (27.06 $ / Gj). 

The study carried out showed that the ecological efficiency of the steam generator of the canned tuna canned 

industrial plant under study, with the use of Fuel Oil # 6 as fuel and a thermal efficiency of 84.91%, It was 46.27%, 

which shows a negative environmental impact due to the level of contamination generated by the system. These 

results, interpreted in light of those achieved by [14] in their studies, show the need to assess the possibility of using 

other fuel alternatives whose ecological efficiency has been demonstrated for the tuna industry. 
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