Analysis of iron content in the leaching process of nickel slag as raw material for manufacturing fero sulfate

https://doi.org/10.21744/ijcms.v5n1.1985

Authors

  • Anis Masyruroh Department of Environmental Engineering, Engineering Faculty, University of Banten Jaya, Serang, Indonesia
  • Fitri Dwirani Department of Environmental Engineering, Engineering Faculty, University of Banten Jaya, Serang, Indonesia
  • Frebhika Sri Pujipangesti Department of Environmental Engineering, Engineering Faculty, University of Banten Jaya, Serang, Indonesia

Keywords:

ferrous sulfate, iron content, leaching, nickel slag

Abstract

Slag waste is waste generated from the nickel processing and smelting industry. Each process of refining one tonne of nickel products produces 50 times solid waste, equivalent to 50 tons of this problem which causes the waste stockpile to increase. The analysis of the iron content in the nickel slag leaching process as a raw material for the manufacture of ferrous sulfate is quite interesting because nickel slag chemically still contains valuable minerals and metals, and the iron content in nickel slag is the most dominant. The purpose of this study was to determine the effectiveness of dissolving iron content in nickel slag from the leaching process which will later be used as a concentration for the manufacture of ferrous sulfate. This research is an experimental study to determine the dissolved Fe content that will be used to make ferrous sulfate coagulant products with concentrations of 0.2; 0.3; 0; 5 and 1 mol/L.

Downloads

Download data is not yet available.

References

Aprianto, Y., & Triastianti, R. D. (2018). Pemanfaatan Limbah Padat Slag Nikel, Abu Sekam Padi, Dan Fly Ash Menjadi Paving block. Jurnal Rekayasa Lingkungan, 18(1).

Burgstaller, W., & Schinner, F. (1993). Leaching of metals with fungi. Journal of Biotechnology, 27(2), 91-116. https://doi.org/10.1016/0168-1656(93)90101-R

Georgiou, D., Aivazidis, A., Hatiras, J., & Gimouhopoulos, K. (2003). Treatment of cotton textile wastewater using lime and ferrous sulfate. Water research, 37(9), 2248-2250. https://doi.org/10.1016/S0043-1354(02)00481-5

Hiroyoshi, N., Hirota, M., Hirajima, T., & Tsunekawa, M. (1997). A case of ferrous sulfate addition enhancing chalcopyrite leaching. Hydrometallurgy, 47(1), 37-45. https://doi.org/10.1016/S0304-386X(97)00032-7

Hsu, C. Y., Sheu, T. S., Yeh, J. W., & Chen, S. K. (2010). Effect of iron content on wear behavior of AlCoCrFexMo0. 5Ni high-entropy alloys. Wear, 268(5-6), 653-659. https://doi.org/10.1016/j.wear.2009.10.013

Jefriyanto, W. (2018). Analisis Karakteristik Paduan Logam Oksida Fe2O3 dan Slag Nikel. In Neutrino (Vol. 1, No. 1, pp. 33-38).

Li, T., Yang, Y., Zhang, C., An, X., Wan, H., Tao, Z., ... & Xu, B. (2007). Effect of manganese on an iron-based Fischer–Tropsch synthesis catalyst prepared from ferrous sulfate. Fuel, 86(7-8), 921-928. https://doi.org/10.1016/j.fuel.2006.10.019

Liu, X., Lai, D., & Wang, Y. (2019). Performance of Pb (II) removal by an activated carbon supported nanoscale zero-valent iron composite at ultralow iron content. Journal of Hazardous Materials, 361, 37-48. https://doi.org/10.1016/j.jhazmat.2018.08.082

Majalis, A. N., Permatasari, N. V., Novitasari, Y., Wicaksono, N., Armin, D., & Pratiwi, R. (2020). Kajian Awal Produksi Fero Sulfat dari Slag Nikel Melalui Proses Pelindian Menggunakan Asam Sulfat. Jurnal Ilmu Lingkungan, 18(1), 31-38.

Moustafa, M. A. (2009). Effect of iron content on the formation of ?-Al5FeSi and porosity in Al–Si eutectic alloys. Journal of materials processing technology, 209(1), 605-610. https://doi.org/10.1016/j.jmatprotec.2008.02.073

Olimjonovna, S. Z., & Ibragimovna, K. I. (2021). Analysis of technological indicators and physic-mechanical properties of knit fabric. International Journal of Chemical & Material Sciences, 4(1), 13-19. https://doi.org/10.31295/ijcms.v4n1.1766

Rambu, M. I., Yusuf, F. N., Nawir, A., & Wakila, M. H. (2021). Analisis Kualitas Air Lindian Sisa Pengolahan Nikel (Ferronickel, Nickel Matte Dan Nickel Pig Iron). Jurnal GEOSAPTA Vol, 7(1).

Sahuquillo, A., Rigol, A., & Rauret, G. (2003). Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. TrAC Trends in Analytical Chemistry, 22(3), 152-159. https://doi.org/10.1016/S0165-9936(03)00303-0

Setiawan, I. (2016). Pengolahan nikel laterit secara pirometalurgi: kini dan penelitian kedepan. Prosiding Semnastek.

Sunardi, M. E. P. (2016). Technopreneur Ferro Sulfat Dari Scrap Besi Bengkel Bubut Bagi Siswa SMK. Jurnal DIANMAS, 5(2).

Wang, Z. J., Ni, W., Jia, Y., Zhu, L. P., & Huang, X. Y. (2010). Crystallization behavior of glass ceramics prepared from the mixture of nickel slag, blast furnace slag and quartz sand. Journal of Non-Crystalline Solids, 356(31-32), 1554-1558. https://doi.org/10.1016/j.jnoncrysol.2010.05.063

Wu, Q., Wu, Y., Tong, W., & Ma, H. (2018). Utilization of nickel slag as raw material in the production of Portland cement for road construction. Construction and Building Materials, 193, 426-434. https://doi.org/10.1016/j.conbuildmat.2018.10.109

Published

2022-10-14

How to Cite

Masyruroh, A., Dwirani, F., & Pujipangesti, F. S. (2022). Analysis of iron content in the leaching process of nickel slag as raw material for manufacturing fero sulfate. International Journal of Chemical & Material Sciences, 5(1), 14-19. https://doi.org/10.21744/ijcms.v5n1.1985