The main properties of the catalytic reforming catalyst

https://doi.org/10.21744/ijcms.v6n1.2145

Authors

  • Abdugaffor M. Khurmamatov Institute of General and Inorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan
  • Navruzbek A. Mirzayev Fergana Polytechnic Institute, Fergana, Republic of Uzbekistan
  • Abdulaziz I. Jurayev Fergana Polytechnic Institute, Fergana, Republic of Uzbekistan

Keywords:

aerodynamics, catalyst, dust, flowability, humidity, hygroscopicity, stickiness, wettability

Abstract

The article presents the results of adhesion, flowability, hygroscopicity, and wettability of RG-482, 582-1.2 catalyst dust under laboratory conditions. It is determined that the smaller the particle size, the easier they stick to the surface of the apparatus. The stickiness of dust was determined by the size of the solid particles of catalyst dust. In the course of the experiments, it was also proved that this catalyst dust is not sticky, this is because the catalyst dust mainly contains fine solid particles, a two-stage efficient process line for cleaning atmospheric air from fine solid particles was proposed.

Downloads

Download data is not yet available.

References

Adachi, K., & Tainosho, Y. (2004). Characterization of heavy metal particles embedded in tire dust. Environment international, 30(8), 1009-1017. https://doi.org/10.1016/j.envint.2004.04.004

Al-Amshawee, S., Yunus, M. Y. B. M., Lynam, J. G., Lee, W. H., Dai, F., & Dakhil, I. H. (2021). Roughness and wettability of biofilm carriers: A systematic review. Environmental Technology & Innovation, 21, 101233. https://doi.org/10.1016/j.eti.2020.101233

Almokhsen, M. ?. (2019). Modern technologies of catalytic reforming. ????? ?????, 3(5), 130-132.

Chen, W. H., Lin, B. J., Colin, B., Chang, J. S., Pétrissans, A., Bi, X., & Pétrissans, M. (2018). Hygroscopic transformation of woody biomass torrefaction for carbon storage. Applied energy, 231, 768-776. https://doi.org/10.1016/j.apenergy.2018.09.135

Farfán, R. F. M., Zambrano, T. Y. M., Sosa, V. M. D., López, J. D. M., & León, G. T. R. (2020). Design and construction of a cold room with photovoltaic support for lighting. International Journal of Chemical & Material Sciences, 3(1), 12-19. https://doi.org/10.31295/ijcms.v3n1.600

Georgieva, E. ?., ???????, ?. ?., & ????, ?. ?. (2017). Modern technologies in catalytic reforming. Alley nauki, (7), 390-393.

Ghoneim, S. A., El-Salamony, R. A., & El-Temtamy, S. A. (2016). Review on innovative catalytic reforming of natural gas to syngas. World Journal of Engineering and Technology, 4(01), 116.

Gorbatenko, Yu. A. (2014). Aerosols and their main physical and chemical properties.

Juarez-Enriquez, E., Olivas, G. I., Zamudio-Flores, P. B., Ortega-Rivas, E., Perez-Vega, S., & Sepulveda, D. R. (2017). Effect of water content on the flowability of hygroscopic powders. Journal of Food Engineering, 205, 12-17. https://doi.org/10.1016/j.jfoodeng.2017.02.024

Lapinski, M. P., Metro, S., Pujado, P. R., & Moser, M. (2015). Catalytic reforming in petroleum processing. In Handbook of Petroleum Processing (pp. 229-260). Springer, Cham.

Lazghab, M., Saleh, K., Pezron, I., Guigon, P., & Komunjer, L. (2005). Wettability assessment of finely divided solids. Powder technology, 157(1-3), 79-91. https://doi.org/10.1016/j.powtec.2005.05.014

Li, D., Li, X., & Gong, J. (2016). Catalytic reforming of oxygenates: state of the art and future prospects. Chemical reviews, 116(19), 11529-11653.

Mekhilef, S., Saidur, R., & Kamalisarvestani, M. (2012). Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renewable and sustainable energy reviews, 16(5), 2920-2925. https://doi.org/10.1016/j.rser.2012.02.012

Moulijn, J. A., Van Diepen, A. E., & Kapteijn, F. (2001). Catalyst deactivation: is it predictable?: What to do?. Applied Catalysis A: General, 212(1-2), 3-16. https://doi.org/10.1016/S0926-860X(00)00842-5

Prokofieva, T. ?., & ???????, ?. (1997). Technological calculation of the reactor block of the installation of catalytic reforming with platinum catalyst. Method. instructions. ?.: ????.

Shchenko, L. ?. (2015). Technology of catalysts and adsorbents.

Sotelo-Boyás, R., & Froment, G. F. (2009). Fundamental kinetic modeling of catalytic reforming. Industrial & Engineering Chemistry Research, 48(3), 1107-1119.

Sprengers, J. W., Mars, M. J., Duin, M. A., Cavell, K. J., & Elsevier, C. J. (2003). Selective hydrosilylation of styrene using an in situ formed platinum (1, 3-dimesityl-dihydroimidazol-2-ylidene) catalyst. Journal of organometallic chemistry, 679(2), 149-152. https://doi.org/10.1016/S0022-328X(03)00514-X

Tai, H., Wang, S., Duan, Z., & Jiang, Y. (2020). Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sensors and actuators B: chemical, 318, 128104. https://doi.org/10.1016/j.snb.2020.128104 https://doi.org/10.1016/j.snb.2020.128104

Yang, J., Sliva, A., Banerjee, A., Dave, R. N., & Pfeffer, R. (2005). Dry particle coating for improving the flowability of cohesive powders. Powder technology, 158(1-3), 21-33. https://doi.org/10.1016/j.powtec.2005.04.032

Zeng, X., Wang, F., Han, Z., Han, J., Zhang, J., Wu, R., & Xu, G. (2019). Assessment of char property on tar catalytic reforming in a fluidized bed reactor for adopting a two-stage gasification process. Applied Energy, 248, 115-125. https://doi.org/10.1016/j.apenergy.2019.04.122

Published

2023-06-21

How to Cite

Khurmamatov, A. M., Mirzayev, N. A., & Jurayev, A. I. (2023). The main properties of the catalytic reforming catalyst. International Journal of Chemical & Material Sciences, 6(1), 10-14. https://doi.org/10.21744/ijcms.v6n1.2145