Evaluating sustainability: A review of recycling technologies of spent lithium-ion batteries
Keywords:
Direct Reuse, Electrochemical Processes, Hydrometallurgical Recycling, Li-Ion Battery Disassembly, Lithium-Ion Battery, Pyrometallurgical ProcessesAbstract
The lithium-ion battery business has grown significantly over the last eight years, with lithium recycling playing an important role in this expansion. The organizations rely on lithium, a key component of lithium-ion batteries, which is derived from natural minerals and brines. However, the sophisticated and energy-intensive procedures required for lithium extraction use a huge aggregate of energy. Lithium usage poured by 18% between 2018 and 2019, indicating the depletion is inevitable. This has led to the development of various lithium recycling methods, including pyrometallurgy, hydrometallurgy, and electrochemical extraction. Despite increased interest in lithium recycling, less than 1% of lithium is presently recycled. Lithium-ion batteries are classified into several varieties, including lithium carbonate, lithium hydroxide, lithium metal, butyl lithium, and lithium specialty batteries. The applications section focuses on their use in transferrable strategies, rechargeable cars, and grid-energy packing structures. This study concludes by emphasizing the accumulative petition for lithium-ion batteries as well as the need for improvements in enactment, affordability, and safety.
Downloads
References
Akhmetov, N., Manakhov, A., & Al-Qasim, A. S. (2023). Li-ion battery cathode recycling: an emerging response to growing metal demand and accumulating battery waste. Electronics, 12(5), 1152.
Al-Zareer, M., Michalak, A., Da Silva, C., & Amon, C. H. (2021). Predicting specific heat capacity and directional thermal conductivities of cylindrical lithium-ion batteries: A combined experimental and simulation framework. Applied Thermal Engineering, 182, 116075. https://doi.org/10.1016/j.applthermaleng.2020.116075
Arshad, F., Lin, J., Manurkar, N., Fan, E., Ahmad, A., Tariq, M. U. N., ... & Li, L. (2022). Life cycle assessment of lithium-ion batteries: a critical review. Resources, Conservation and Recycling, 180, 106164. https://doi.org/10.1016/j.resconrec.2022.106164
Augustson, R. H., & Reilly, T. D. (1974). Fundamentals of passive nondestructive assay of fissionable material (No. LA-5651-M). Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
Bae, H., & Kim, Y. (2021). Technologies of lithium recycling from waste lithium ion batteries: a review. Materials advances, 2(10), 3234-3250.
Bernardes, A. M., Espinosa, D. C. R., & Tenório, J. S. (2004). Recycling of batteries: a review of current processes and technologies. Journal of Power sources, 130(1-2), 291-298. https://doi.org/10.1016/j.jpowsour.2003.12.026
Cha, H., Kim, J., Lee, Y., Cho, J., & Park, M. (2018). Issues and challenges facing flexible lithium?ion batteries for practical application. Small, 14(43), 1702989.
Chakraborty, S., & Saha, A. K. (2022). Selection of optimal lithium ion battery recycling process: A multi-criteria group decision making approach. Journal of Energy Storage, 55, 105557. https://doi.org/10.1016/j.est.2022.105557
Chandran, V., Ghosh, A., Patil, C. K., Mohanavel, V., Priya, A. K., Rahim, R., ... & Karthick, A. (2021). Comprehensive review on recycling of spent lithium-ion batteries. Materials Today: Proceedings, 47, 167-180. https://doi.org/10.1016/j.matpr.2021.03.744
Chen, R., Nolan, A. M., Lu, J., Wang, J., Yu, X., Mo, Y., ... & Li, H. (2020). The thermal stability of lithium solid electrolytes with metallic lithium. Joule, 4(4), 812-821.
Chen, T., Jin, Y., Lv, H., Yang, A., Liu, M., Chen, B., ... & Chen, Q. (2020). Applications of lithium-ion batteries in grid-scale energy storage systems. Transactions of Tianjin University, 26(3), 208-217.
Choi, J. W., & Aurbach, D. (2016). Promise and reality of post-lithium-ion batteries with high energy densities. Nature reviews materials, 1(4), 1-16.
Deng, D. (2015). Li?ion batteries: basics, progress, and challenges. Energy Science & Engineering, 3(5), 385-418.
Diener, A., Ivanov, S., Haselrieder, W., & Kwade, A. (2022). Evaluation of Deformation Behavior and Fast Elastic Recovery of Lithium?Ion Battery Cathodes via Direct Roll?Gap Detection During Calendering. Energy Technology, 10(4), 2101033.
Diouf, B., & Pode, R. (2015). Potential of lithium-ion batteries in renewable energy. Renewable Energy, 76, 375-380. https://doi.org/10.1016/j.renene.2014.11.058
Diouf, B., & Pode, R. (2015). Potential of lithium-ion batteries in renewable energy. Renewable Energy, 76, 375-380. https://doi.org/10.1016/j.renene.2014.11.058
Du, K., Ang, E. H., Wu, X., & Liu, Y. (2022). Progresses in sustainable recycling technology of spent lithium?ion batteries. Energy & Environmental Materials, 5(4), 1012-1036.
Duan, J., Zhao, J., Li, X., Panchal, S., Yuan, J., Fraser, R., & Fowler, M. (2021). Modeling and analysis of heat dissipation for liquid cooling lithium-ion batteries. Energies, 14(14), 4187.
Duan, X., Zhu, W., Ruan, Z., Xie, M., Chen, J., & Ren, X. (2022). Recycling of lithium batteries—a review. Energies, 15(5), 1611.
Duarte Castro, F., Vaccari, M., & Cutaia, L. (2022). Valorization of resources from end-of-life lithium-ion batteries: A review. Critical Reviews in Environmental Science and Technology, 52(12), 2060-2103.
Ellis, B. L., Lee, K. T., & Nazar, L. F. (2010). Positive electrode materials for Li-ion and Li-batteries. Chemistry of materials, 22(3), 691-714.
Gaines, L. L., & Dunn, J. B. (2014). Lithium-ion battery environmental impacts. In Lithium-ion batteries (pp. 483-508). Elsevier. https://doi.org/10.1016/B978-0-444-59513-3.00021-2
Gao, W., Zhang, X., Zheng, X., Lin, X., Cao, H., Zhang, Y., & Sun, Z. H. I. (2017). Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process. Environmental science & technology, 51(3), 1662-1669.
Hao, H., Mu, Z., Jiang, S., Liu, Z., & Zhao, F. (2017). GHG emissions from the production of lithium-ion batteries for electric vehicles in China. Sustainability, 9(4), 504.
Haram, M. H. S. M., Lee, J. W., Ramasamy, G., Ngu, E. E., Thiagarajah, S. P., & Lee, Y. H. (2021). Feasibility of utilising second life EV batteries: Applications, lifespan, economics, environmental impact, assessment, and challenges. Alexandria Engineering Journal, 60(5), 4517-4536. https://doi.org/10.1016/j.aej.2021.03.021
Hasan, F., Kim, J., Song, H., Lee, S. H., Sung, J. H., Kim, J., & Yoo, H. D. (2020). Effect of particle size and doping on the electrochemical characteristics of Ca-doped LiCoO 2 cathodes. Journal of Electrochemical Science and Technology, 11(4), 352-360.
Hayner, C. M., Zhao, X., & Kung, H. H. (2012). Materials for rechargeable lithium-ion batteries. Annual review of chemical and biomolecular engineering, 3(1), 445-471.
Horstmann, B., Danner, T., & Bessler, W. G. (2013). Precipitation in aqueous lithium–oxygen batteries: a model-based analysis. Energy & Environmental Science, 6(4), 1299-1314.
Huang, B., Pan, Z., Su, X., & An, L. (2018). Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of power sources, 399, 274-286. https://doi.org/10.1016/j.jpowsour.2018.07.116
Ji, G., Wang, J., Liang, Z., Jia, K., Ma, J., Zhuang, Z., ... & Cheng, H. M. (2023). Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nature communications, 14(1), 584.
Jiang, S., Hua, H., Zhang, L., Liu, X., Wu, H., & Yuan, Z. (2022). Environmental impacts of hydrometallurgical recycling and reusing for manufacturing of lithium-ion traction batteries in China. Science of The Total Environment, 811, 152224. https://doi.org/10.1016/j.scitotenv.2021.152224
Jin, S., Mu, D., Lu, Z., Li, R., Liu, Z., Wang, Y., ... & Dai, C. (2022). A comprehensive review on the recycling of spent lithium-ion batteries: Urgent status and technology advances. Journal of Cleaner Production, 340, 130535. https://doi.org/10.1016/j.jclepro.2022.130535
Jung, S. K., Hwang, I., Chang, D., Park, K. Y., Kim, S. J., Seong, W. M., ... & Kang, K. (2019). Nanoscale phenomena in lithium-ion batteries. Chemical reviews, 120(14), 6684-6737.
Kermani, G., & Sahraei, E. (2017). Characterization and modeling of the mechanical properties of lithium-ion batteries. Energies, 10(11), 1730.
Kim, S., Bang, J., Yoo, J., Shin, Y., Bae, J., Jeong, J., ... & Kwon, K. (2021). A comprehensive review on the pretreatment process in lithium-ion battery recycling. Journal of Cleaner Production, 294, 126329. https://doi.org/10.1016/j.jclepro.2021.126329
Krehl, P. W., & Takeuchi, E. S. (2000). Comparative analysis of primary lithium cells. In Fifteenth Annual Battery Conference on Applications and Advances (Cat. No. 00TH8490) (pp. 101-107). IEEE.
Kumar, P., Dwivedi, P.K., Yadav, P., Shelke, MVJENMfE. (2019). Science E. Nanostructured Materials for Li-Ion Battery Applications. 105-172.
Kuznetsov, O. A., Mohanty, S., Pigos, E., Chen, G., Cai, W., & Harutyunyan, A. R. (2023). High energy density flexible and ecofriendly lithium-ion smart battery. Energy Storage Materials, 54, 266-275. https://doi.org/10.1016/j.ensm.2022.10.023
Ladpli, P., Nardari, R., Kopsaftopoulos, F., & Chang, F. K. (2019). Multifunctional energy storage composite structures with embedded lithium-ion batteries. Journal of Power Sources, 414, 517-529. https://doi.org/10.1016/j.jpowsour.2018.12.051
Lai, X., Chen, Q., Tang, X., Zhou, Y., Gao, F., Guo, Y., ... & Zheng, Y. (2022). Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective. Etransportation, 12, 100169. https://doi.org/10.1016/j.etran.2022.100169
Lai, X., Chen, Q., Tang, X., Zhou, Y., Gao, F., Guo, Y., ... & Zheng, Y. (2022). Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective. Etransportation, 12, 100169. https://doi.org/10.1016/j.etran.2022.100169
Lain, M. J. (2001). Recycling of lithium ion cells and batteries. Journal of power sources, 97, 736-738. https://doi.org/10.1016/S0378-7753(01)00600-0
Landesfeind, J., & Gasteiger, H. A. (2019). Temperature and concentration dependence of the ionic transport properties of lithium-ion battery electrolytes. Journal of The Electrochemical Society, 166(14), A3079-A3097.
Latini, D., Vaccari, M., Lagnoni, M., Orefice, M., Mathieux, F., Huisman, J., ... & Bertei, A. (2022). A comprehensive review and classification of unit operations with assessment of outputs quality in lithium-ion battery recycling. Journal of Power Sources, 546, 231979. https://doi.org/10.1016/j.jpowsour.2022.231979
Li, H., Chen, H., Zhong, G., Wang, Y., & Wang, Q. (2019). Experimental study on thermal runaway risk of 18650 lithium ion battery under side-heating condition. Journal of Loss Prevention in the Process Industries, 61, 122-129. https://doi.org/10.1016/j.jlp.2019.06.012
Li, J., Cai, Y., Wu, H., Yu, Z., Yan, X., Zhang, Q., ... & Bao, Z. (2021). Polymers in lithium?ion and lithium metal batteries. Advanced Energy Materials, 11(15), 2003239.
Li, J., Cheng, Y., Ai, L., Jia, M., Du, S., Yin, B., ... & Zhang, H. (2015). 3D simulation on the internal distributed properties of lithium-ion battery with planar tabbed configuration. Journal of Power Sources, 293, 993-1005. https://doi.org/10.1016/j.jpowsour.2015.06.034
Li, J., Cheng, Y., Ai, L., Jia, M., Du, S., Yin, B., ... & Zhang, H. (2015). 3D simulation on the internal distributed properties of lithium-ion battery with planar tabbed configuration. Journal of Power Sources, 293, 993-1005. https://doi.org/10.1016/j.jpowsour.2015.06.034
Li, L., Zhang, X., Li, M., Chen, R., Wu, F., Amine, K., & Lu, J. (2018). The recycling of spent lithium-ion batteries: a review of current processes and technologies. Electrochemical Energy Reviews, 1, 461-482.
Li, X., Liu, S., Yang, J., He, Z., Zheng, J., & Li, Y. (2023). Electrochemical methods contribute to the recycling and regeneration path of lithium-ion batteries. Energy Storage Materials, 55, 606-630. https://doi.org/10.1016/j.ensm.2022.12.022
Li, X., Mo, Y., Qing, W., Shao, S., Tang, C. Y., & Li, J. (2019). Membrane-based technologies for lithium recovery from water lithium resources: A review. Journal of Membrane Science, 591, 117317. https://doi.org/10.1016/j.memsci.2019.117317
Liang, Y., Su, J., Xi, B., Yu, Y., Ji, D., Sun, Y., ... & Zhu, J. (2017). Life cycle assessment of lithium-ion batteries for greenhouse gas emissions. Resources, conservation and recycling, 117, 285-293. https://doi.org/10.1016/j.resconrec.2016.08.028
Liu, B., Zhang, J. G., & Xu, W. (2018). Advancing lithium metal batteries. Joule, 2(5), 833-845.
Liu, D., Song, Y., Li, L., Liao, H., & Peng, Y. (2018). On-line life cycle health assessment for lithium-ion battery in electric vehicles. Journal of cleaner production, 199, 1050-1065. https://doi.org/10.1016/j.jclepro.2018.06.182
Liu, F., Peng, C., Ma, Q., Wang, J., Zhou, S., Chen, Z., ... & Lundström, M. (2021). Selective lithium recovery and integrated preparation of high-purity lithium hydroxide products from spent lithium-ion batteries. Separation and Purification Technology, 259, 118181. https://doi.org/10.1016/j.seppur.2020.118181
Liu, H., & Azimi, G. (2022). Production of battery grade lithium hydroxide monohydrate using barium hydroxide causticizing agent. Resources, Conservation and Recycling, 179, 106115. https://doi.org/10.1016/j.resconrec.2021.106115
Liu, X., Ren, D., Hsu, H., Feng, X., Xu, G. L., Zhuang, M., ... & Ouyang, M. (2018). Thermal runaway of lithium-ion batteries without internal short circuit. Joule, 2(10), 2047-2064.
Lv, W., Wang, Z., Cao, H., Sun, Y., Zhang, Y., & Sun, Z. (2018). A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 6(2), 1504-1521.
Ma, S., Jiang, M., Tao, P., Song, C., Wu, J., Wang, J., ... & Shang, W. (2018). Temperature effect and thermal impact in lithium-ion batteries: A review. Progress in Natural Science: Materials International, 28(6), 653-666. https://doi.org/10.1016/j.pnsc.2018.11.002
Maleki, H., Al Hallaj, S., Selman, J. R., Dinwiddie, R. B., & Wang, H. (1999). Thermal properties of lithium?ion battery and components. Journal of The Electrochemical Society, 146(3), 947.
Mansur, M. B., Guimarães, A. S., & Petraniková, M. (2022). An overview on the recovery of cobalt from end-of-life lithium ion batteries. Mineral Processing and Extractive Metallurgy Review, 43(4), 489-509.
McManus, M. C. (2012). Environmental consequences of the use of batteries in low carbon systems: The impact of battery production. Applied Energy, 93, 288-295. https://doi.org/10.1016/j.apenergy.2011.12.062
Mrozik, W., Rajaeifar, M. A., Heidrich, O., & Christensen, P. (2021). Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy & Environmental Science, 14(12), 6099-6121.
Murdock, B. E., Toghill, K. E., & Tapia?Ruiz, N. (2021). A perspective on the sustainability of cathode materials used in lithium?ion batteries. Advanced Energy Materials, 11(39), 2102028.
Natarajan, S., Divya, M. L., & Aravindan, V. (2022). Should we recycle the graphite from spent lithium-ion batteries? The untold story of graphite with the importance of recycling. Journal of Energy Chemistry, 71, 351-369. https://doi.org/10.1016/j.jechem.2022.04.012
Nazri, G. A., & Pistoia, G. (Eds.). (2008). Lithium batteries: science and technology. Springer Science & Business Media.
Nedjalkov, A., Meyer, J., Köhring, M., Doering, A., Angelmahr, M., Dahle, S., ... & Schade, W. (2016). Toxic gas emissions from damaged lithium ion batteries—analysis and safety enhancement solution. Batteries, 2(1), 5.
Noailles, L. D., Johnson, C. S., Vaughey, J. T., & Thackeray, M. M. (1999). Lithium insertion into hollandite-type TiO2. Journal of power sources, 81, 259-263. https://doi.org/10.1016/S0378-7753(98)00244-4
Oliveira, L., Messagie, M., Rangaraju, S., Sanfelix, J., Rivas, M. H., & Van Mierlo, J. (2015). Key issues of lithium-ion batteries–from resource depletion to environmental performance indicators. Journal of cleaner production, 108, 354-362. https://doi.org/10.1016/j.jclepro.2015.06.021
Ordoñez, J., Gago, E. J., & Girard, A. (2016). Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews, 60, 195-205. https://doi.org/10.1016/j.rser.2015.12.363
Park, K. H., Kaup, K., Assoud, A., Zhang, Q., Wu, X., & Nazar, L. F. (2020). High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Letters, 5(2), 533-539.
Pell, R., Tijsseling, L., Goodenough, K., Wall, F., Dehaine, Q., Grant, A., ... & Whattoff, P. (2021). Towards sustainable extraction of technology materials through integrated approaches. Nature Reviews Earth & Environment, 2(10), 665-679.
Peng, C., Liu, F., Wang, Z., Wilson, B. P., & Lundström, M. (2019). Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system. Journal of Power Sources, 415, 179-188. https://doi.org/10.1016/j.jpowsour.2019.01.072
Philippot, M., Alvarez, G., Ayerbe, E., Van Mierlo, J., & Messagie, M. (2019). Eco-efficiency of a lithium-ion battery for electric vehicles: Influence of manufacturing country and commodity prices on ghg emissions and costs. Batteries, 5(1), 23.
Pistoia, G. (Ed.). (2013). Lithium-ion batteries: advances and applications.
Rahman, T., & Alharbi, T. (2024). Exploring lithium-Ion battery degradation: A concise review of critical factors, impacts, data-driven degradation estimation techniques, and sustainable directions for energy storage systems. Batteries, 10(7), 220.
Rajaeifar, M. A., Raugei, M., Steubing, B., Hartwell, A., Anderson, P. A., & Heidrich, O. (2021). Life cycle assessment of lithium?ion battery recycling using pyrometallurgical technologies. Journal of Industrial Ecology, 25(6), 1560-1571.
Rana, S., Kumar, R., & Bharj, R. S. (2023). Current trends, challenges, and prospects in material advances for improving the overall safety of lithium-ion battery pack. Chemical Engineering Journal, 463, 142336. https://doi.org/10.1016/j.cej.2023.142336
Ravdel, B., Abraham, K. M., Gitzendanner, R., DiCarlo, J., Lucht, B., & Campion, C. (2003). Thermal stability of lithium-ion battery electrolytes. Journal of Power Sources, 119, 805-810. https://doi.org/10.1016/S0378-7753(03)00257-X
Ren, Z., Li, H., Yan, W., Lv, W., Zhang, G., Lv, L., ... & Gao, W. (2023). Comprehensive evaluation on production and recycling of lithium-ion batteries: A critical review. Renewable and Sustainable Energy Reviews, 185, 113585. https://doi.org/10.1016/j.rser.2023.113585
Rodrigues, M. T. F., Babu, G., Gullapalli, H., Kalaga, K., Sayed, F. N., Kato, K., ... & Ajayan, P. M. (2017). A materials perspective on Li-ion batteries at extreme temperatures. nature energy, 2(8), 1-14.
Sanker, S. B., & Baby, R. (2022). Phase change material based thermal management of lithium ion batteries: A review on thermal performance of various thermal conductivity enhancers. Journal of Energy Storage, 50, 104606. https://doi.org/10.1016/j.est.2022.104606
Scrosati, B. (2011). History of lithium batteries. Journal of solid state electrochemistry, 15(7), 1623-1630.
Sommerville, R., Zhu, P., Rajaeifar, M. A., Heidrich, O., Goodship, V., & Kendrick, E. (2021). A qualitative assessment of lithium ion battery recycling processes. Resources, Conservation and Recycling, 165, 105219. https://doi.org/10.1016/j.resconrec.2020.105219
Sonoc, A., Jeswiet, J., & Soo, V. K. (2015). Opportunities to improve recycling of automotive lithium ion batteries. Procedia Cirp, 29, 752-757. https://doi.org/10.1016/j.procir.2015.02.039
Stetten, G., Koontz, F., Sheppard, C., & Koontz, C. (1990). Telemetric egg for monitoring nest microclimate of endangered birds. International Foundation for Telemetering.
Tan, K. M., Babu, T. S., Ramachandaramurthy, V. K., Kasinathan, P., Solanki, S. G., & Raveendran, S. K. (2021). Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration. Journal of Energy Storage, 39, 102591.
Tarascon, J. M. (2008). Towards sustainable and renewable systems for electrochemical energy storage. ChemSusChem: Chemistry & Sustainability Energy & Materials, 1(8?9), 777-779.
Tong, H., Zhou, Q., Zhang, B., Wang, X., & Yao, Y. (2019). A novel core-shell structured nickel-rich layered cathode material for high-energy lithium-ion batteries. Engineered Science, 8(5), 25-32.
Torkaman, R., Asadollahzadeh, M., Torab-Mostaedi, M., & Maragheh, M. G. (2017). Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process. Separation and Purification Technology, 186, 318-325. https://doi.org/10.1016/j.seppur.2017.06.023
Tran, M. K., Sherman, S., Samadani, E., Vrolyk, R., Wong, D., Lowery, M., & Fowler, M. (2020). Environmental and economic benefits of a battery electric vehicle powertrain with a zinc–air range extender in the transition to electric vehicles. Vehicles, 2(3), 398-412.
Tron, A., Jeong, S., Park, Y. D., & Mun, J. (2019). Aqueous lithium-ion battery of nano-LiFePO4 with antifreezing agent of ethyleneglycol for low-temperature operation. ACS Sustainable Chemistry & Engineering, 7(17), 14531-14538.
Wagemaker, M., & Mulder, F. M. (2013). Properties and promises of nanosized insertion materials for Li-ion batteries. Accounts of chemical research, 46(5), 1206-1215.
Wagemaker, M., & Mulder, F. M. (2013). Properties and promises of nanosized insertion materials for Li-ion batteries. Accounts of chemical research, 46(5), 1206-1215.
Wang, Q., Liu, B., Shen, Y., Wu, J., Zhao, Z., Zhong, C., & Hu, W. (2021). Confronting the challenges in lithium anodes for lithium metal batteries. Advanced Science, 8(17), 2101111.
Wang, R., Zhang, Y., Sun, K., Qian, C., & Bao, W. (2022). Emerging green technologies for recovery and reuse of spent lithium-ion batteries–a review. Journal of Materials Chemistry A, 10(33), 17053-17076.
Wang, Y., & Cao, G. (2008). Developments in nanostructured cathode materials for high?performance lithium?ion batteries. Advanced materials, 20(12), 2251-2269.
Wen, J., Yu, Y., & Chen, C. (2012). A review on lithium-ion batteries safety issues: existing problems and possible solutions. Materials express, 2(3), 197-212.
Winslow, K. M., Laux, S. J., & Townsend, T. G. (2018). A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resources, Conservation and Recycling, 129, 263-277. https://doi.org/10.1016/j.resconrec.2017.11.001
Xu, M., Zuo, X., Li, W., Zhou, H., Liu, J., & Yuan, Z. (2006). Effect of butyl sultone on the Li-ion battery performance and interface of graphite electrode. Acta Physico-Chimica Sinica, 22(3), 335-340. https://doi.org/10.1016/S1872-1508(06)60009-0
Yang, Y., Okonkwo, E. G., Huang, G., Xu, S., Sun, W., & He, Y. (2021). On the sustainability of lithium ion battery industry–A review and perspective. Energy Storage Materials, 36, 186-212. https://doi.org/10.1016/j.ensm.2020.12.019
Zhang, L., Ning, Z., Peng, H., Mu, Z., & Sun, C. (2017). Effects of vibration on the electrical performance of lithium-ion cells based on mathematical statistics. Applied Sciences, 7(8), 802.
Zhang, T., & Ran, F. (2021). Design strategies of 3D carbon?based electrodes for charge/ion transport in lithium ion battery and sodium ion battery. Advanced Functional Materials, 31(17), 2010041.
Zhao, Z., Huang, J., & Peng, Z. (2018). Achilles’ Heel of lithium–air batteries: Lithium carbonate. Angewandte Chemie International Edition, 57(15), 3874-3886.
Zichen, W., & Changqing, D. (2021). A comprehensive review on thermal management systems for power lithium-ion batteries. Renewable and Sustainable Energy Reviews, 139, 110685. https://doi.org/10.1016/j.rser.2020.110685
Published
How to Cite
Issue
Section
Copyright (c) 2025 International journal of chemical & material sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the International Journal of Chemical & Material Sciences (IJCMS) are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJCMS right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.
Articles published in IJCMS can be copied, communicated and shared in their published form for non-commercial purposes provided full attribution is given to the author and the journal. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.