Correlation between magnetic resonance imaging (MRI) and dynamic mechanical analysis (DMA) in assessing consistency of brain tumor

https://doi.org/10.31295/ijhms.v4n2.1737

Authors

  • Januardi Rifian Jani Department of Neurosurgery, Faculty of Medicine of Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
  • Abdul Hafid Bajamal Department of Neurosurgery, Faculty of Medicine of Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
  • Sri Andreani Utomo Department of Radiology, Faculty of Medicine of Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
  • Muhammad Arifin Parenrengi Department of Neurosurgery, Faculty of Medicine of Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
  • Asra Al Fauzi Department of Neurosurgery, Faculty of Medicine of Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
  • Budi Utomo Department of Public Health, Faculty of Medicine of Universitas Airlangga, Surabaya, Indonesia
  • Yanurita Dwihapsari Department of Physics, Faculty of Science of Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

Keywords:

apparent diffusion coefficient (ADC), brain tumor, dynamic mechanical analysis (DMA), fractional anisotropy (FA), magnetic resonance imaging (MRI), modulus value, T2 weighted image (T2WI)

Abstract

Management of brain tumors require various disciplines collaboration. The choice of surgery equipment are based on accurate preoperative data of the brain tumor consistency. Non-invasive method of measuring brain tumor consistency can use MRI. Therefore, authors aim to analyze the correlation between MRI and DMA in assessing brain tumor consistency. This research is observational analytic study to find out the relationship between ADC ratio, T2-WI intensity, and FA value of brain tumor with its consistency using DMA modulus value after surgery. As comparison, we use agarose with four different concentrations. This study also looks for relationship between ADC value, FA value, and T2-WI intensity of agarose with its modulus value on DMA device. We followed the patients since they have diagnosed with brain tumor until post-surgery. The Spearman correlation test shows correlation coefficient and p-value between ADC ratio, FA value, T2WI intensity and modulus in brain tumor which are r=0.026(p=0.915), r=0.549(p=0.015), and r= -0.181(p=0.459) respectively, also between ADC, FA value, T2WI intensity and modulus in agarose are r=0.600(p=0.400), r= -0.800(p=0.200), and r=0.632(p=0.368) respectively. So, there is correlation between FA values and modulus in brain tumor. However, the result of other variables did not show any correlation from this study.

Downloads

Download data is not yet available.

References

Al-Sharydah, A. M., Al-Arfaj, H. K., Al-Muhaish, H. S., Al-Suhaibani, S. S., Al-Aftan, M. S., Almedallah, D. K., ... & Al-Jubran, S. A. (2019). Can apparent diffusion coefficient values help distinguish between different types of pediatric brain tumors?. European journal of radiology open, 6, 49-55., 6(December 2018), pp. 49–55. doi: 10.1016/j.ejro.2018.12.004.

Archana, A., Datta, C., & Tiwari, P. (2016). Impact of environmental degradation on human health. International research journal of management, IT and social sciences, 3(1), 1-6.

Aryani, L. N. A., & Lesmana, C. B. J. (2019). Neuropsychiatric factor and polymorphism gene in internet addiction. International Journal of Health & Medical Sciences, 2(1), 39-44.

Boxerman, J. L., Shiroishi, M. S., Ellingson, B. M., & Pope, W. B. (2016). Dynamic susceptibility contrast MR imaging in glioma: review of current clinical practice. Magnetic Resonance Imaging Clinics, 24(4), 649-670.

Dwihapsari, Y., & Darminto, D. (2010). Perancangan dan pembuatan penetrometer untuk menentukan konsistensi tumor otak. JFA (Jurnal Fisika dan Aplikasinya), 6(2), 100206-1.

Dwihapsari, Y., Asdiantoro, E., & Maulidiyah, N. (2020). On the Assessment of Image Inhomogeneity Using T 2 Magnetic Resonance Imaging in Head Phantom for Radiotherapy Treatment Planning: Preliminary Study. Applied Magnetic Resonance, 51(1), 59-69.

Dwihapsari, Y., Mostert, J. P., & Hoogduin, J. M. (2011, November). Signal enhancement in post-processing of multiple-voxel magnetic resonance spectroscopy. In 2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (pp. 156-162). IEEE.

Giannotti, E., Waugh, S., Priba, L., Davis, Z., Crowe, E., & Vinnicombe, S. (2015). Assessment and quantification of sources of variability in breast apparent diffusion coefficient (ADC) measurements at diffusion weighted imaging. European journal of radiology, 84(9), 1729-1736. https://doi.org/10.1016/j.ejrad.2015.05.032

Gordillo, N., Montseny, E., & Sobrevilla, P. (2013). State of the art survey on MRI brain tumor segmentation. Magnetic resonance imaging, 31(8), 1426-1438. https://doi.org/10.1016/j.mri.2013.05.002

Herneth, A. M., Guccione, S., & Bednarski, M. (2003). Apparent diffusion coefficient: a quantitative parameter for in vivo tumor characterization. European journal of radiology, 45(3), 208-213. https://doi.org/10.1016/S0720-048X(02)00310-8

Hoover, K., Grove, M., Gardner, M., Hughes, D. P., McNeil, J., & Slavicek, J. (2011). A gene for an extended phenotype. Science, 333(6048), 1401-1401.

I??n, A., Direko?lu, C., & ?ah, M. (2016). Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Computer Science, 102, 317-324. https://doi.org/10.1016/j.procs.2016.09.407

Jackson, P. R. (2012). Multiexponential T 2 and Diffusion Magnetic Resonance Measurements of Glioma Cells. University of California, Berkeley.

Jones, D. S. (1999). Dynamic mechanical analysis of polymeric systems of pharmaceutical and biomedical significance. International journal of pharmaceutics, 179(2), 167-178. https://doi.org/10.1016/S0378-5173(98)00337-8

Kashimura, H., Inoue, T., Ogasawara, K., Arai, H., Otawara, Y., Kanbara, Y., & Ogawa, A. (2007). Prediction of meningioma consistency using fractional anisotropy value measured by magnetic resonance imaging. Journal of neurosurgery, 107(4), 784-787.

Kinoshita, M., Hashimoto, N., Goto, T., Kagawa, N., Kishima, H., Izumoto, S., ... & Yoshimine, T. (2008). Fractional anisotropy and tumor cell density of the tumor core show positive correlation in diffusion tensor magnetic resonance imaging of malignant brain tumors. Neuroimage, 43(1), 29-35. https://doi.org/10.1016/j.neuroimage.2008.06.041

Kochenderfer, J. N., Dudley, M. E., Kassim, S. H., Somerville, R. P., Carpenter, R. O., Stetler-Stevenson, M., ... & Rosenberg, S. A. (2015). Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. Journal of clinical oncology, 33(6), 540.

Murphy, K., & Fox, M. D. (2017). Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage, 154, 169-173.

Oh, M. S., Ahn, K. J., Choi, H. S., Jung, S. L., Lee, Y. J., & Kim, B. S. (2011). Pre-operative evaluation of consistency in intra-axial brain tumor with diffusion-weighted images (DWI) and conventional MR images. Journal of the Korean Society of Magnetic Resonance in Medicine, 15(2), 102-109.

Pierallini, A., Caramia, F., Falcone, C., Tinelli, E., Paonessa, A., Ciddio, A. B., ... & Bozzao, L. (2006). Pituitary macroadenomas: preoperative evaluation of consistency with diffusion-weighted MR imaging—initial experience. Radiology, 239(1), 223-231.

Pruitt, A. A. (2015). Medical management of patients with brain tumors. Continuum: Lifelong Learning in Neurology, 21(2), 314-331.

Richardson, J. C., Bowtell, R. W., Mäder, K., & Melia, C. D. (2005). Pharmaceutical applications of magnetic resonance imaging (MRI). Advanced drug delivery reviews, 57(8), 1191-1209. https://doi.org/10.1016/j.addr.2005.01.024

Romani, R., Tang, W. J., Mao, Y., Wang, D. J., Tang, H. L., Zhu, F. P., ... & Zhou, L. F. (2014). Diffusion tensor magnetic resonance imaging for predicting the consistency of intracranial meningiomas. Acta neurochirurgica, 156(10), 1837-1845.

Sajjad, M., Khan, S., Muhammad, K., Wu, W., Ullah, A., & Baik, S. W. (2019). Multi-grade brain tumor classification using deep CNN with extensive data augmentation. Journal of computational science, 30, 174-182. https://doi.org/10.1016/j.jocs.2018.12.003

Sener, R. N. (2001). Diffusion MRI: apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Computerized medical imaging and graphics, 25(4), 299-326. https://doi.org/10.1016/S0895-6111(00)00083-5

Shiroishi, M. S., Cen, S. Y., Tamrazi, B., D’Amore, F., Lerner, A., King, K. S., ... & Liu, C. S. J. (2016). Predicting meningioma consistency on preoperative neuroimaging studies. Neurosurgery Clinics, 27(2), 145-154.

Smith, M. M., Saklofske, D. H., & Yan, G. (2015). Perfectionism, trait emotional intelligence, and psychological outcomes. Personality and Individual Differences, 85, 155-158.

Souza, E. M. D., Costa, E. T., & Castellano, G. (2017). Phantoms for diffusion-weighted imaging and diffusion tensor imaging quality control: a review and new perspectives. Research on Biomedical Engineering, 33, 156-165.

Stadnik, T. W., Chaskis, C., Michotte, A., Shabana, W. M., Van Rompaey, K., Luypaert, R., ... & Osteaux, M. (2001). Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. American journal of neuroradiology, 22(5), 969-976.

Strong, M. J., Garces, J., Vera, J. C., Mathkour, M., Emerson, N., & Ware, M. L. (2015). Brain tumors: epidemiology and current trends in treatment. Brain Tumors Neurooncol, 1(1), 1-21.

Xing, D., Papadakis, N. G., Huang, C. L. H., Lee, V. M., Carpenter, T. A., & Hall, L. D. (1997). Optimised diffusion-weighting for measurement of apparent diffusion coefficient (ADC) in human brain. Magnetic resonance imaging, 15(7), 771-784. https://doi.org/10.1016/S0730-725X(97)00037-4

Yogi, M., Nakamura, S., Higa, N., Niki, H., Hirose, Y., ?nuki, Y., & Harima, H. (2013). 153Eu and 69, 71Ga zero-field NMR study of antiferromagnetic state in EuGa4. Journal of the Physical Society of Japan, 82(10), 103701.

Published

2021-08-25

How to Cite

Jani, J. R., Bajamal, A. H., Utomo, S. A., Parenrengi, M. A., Fauzi, A. A., Utomo, B., & Dwihapsari, Y. (2021). Correlation between magnetic resonance imaging (MRI) and dynamic mechanical analysis (DMA) in assessing consistency of brain tumor. International Journal of Health & Medical Sciences, 4(2), 260-266. https://doi.org/10.31295/ijhms.v4n2.1737

Most read articles by the same author(s)