Expression malondialdehyde (MDA) of brain after injury with the extract of kencur (Kaempferia Galanga L)

Experimental study wistar rats

https://doi.org/10.21744/ijhms.v5n1.1848

Authors

  • Mahendra Budi Sagita Department of Neurosurgery, Faculty of Medicine Universitas Airlangga – Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
  • Agus Turchan Department of Neurosurgery, Faculty of Medicine Universitas Airlangga – Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
  • Budi Utomo Department of Public Health Science and Preventive Medicine, Faculty of Medicine Universitas Airlangga – Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
  • Asra Al Fauzi Department of Neurosurgery, Faculty of Medicine Universitas Airlangga – Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
  • Dyah Fauziah Department of Pathology Anatomi, Faculty of Medicine Universitas Airlangga – Dr. Soetomo Academic General Hospital, Surabaya, Indonesia

Keywords:

expression malondialdehyde (MDA), brain after injury, extract of kencur, experimental study Wistar rats, Kaempferia Galanga L

Abstract

Neurological damage in brain injury occurs due to secondary brain injury. Kencur extract has antioxidant potential with total phenolic and flavonoid content including luteolin apigenin and is expected to reduce MDA expression to prevent secondary injury. This study is an experimental laboratory. The treatment of all samples was carried out simultaneously using a post-test-only control group design. Based on the ANOVA test, the significance value of the Kencur extract treatment group was 0.000 (p<0.05) indicating that there was a difference in MDA expression in brain-injured rats without kencur extract with brain-injured rats and given kencur extract. In the 24-hour and 48-hour time groups, a significance value of 0.488 (p> 0.05) showed no significant difference in MDA expression. Then the Kencur extract treatment group with a time group of 0.117 (p> 0.05) showed no significant difference in MDA expression. There was a significant difference in the expression of MDA in brain-injured rats without kencur extract with brain-injured rats and given kencur extract. There were no significant differences in the MDA expression in the 24-hour and 48-hour time groups and the Kencur extract treatment group and the 24-hour and 48-hour time groups.

Downloads

Download data is not yet available.

References

Ali, M. B., Hahn, E. J., & Paek, K. Y. (2005). Effects of light intensities on antioxidant enzymes and malondialdehyde content during short-term acclimatization on micropropagated Phalaenopsis plantlet. Environmental and Experimental Botany, 54(2), 109-120. https://doi.org/10.1016/j.envexpbot.2004.06.005

Aroonrerk, N., & Kamkaen, N. (2009). Anti-inflammatory activity of Quercus infectoria, Glycyrrhiza uralensis, Kaempferia galanga and Coptis chinensis, the main components of Thai herbal remedies for aphthous ulcer. Journal of Health Research, 23(1), 17-22.

Ba?kaya, M. K., Rao, A. M., Do?an, A., Donaldson, D., & Dempsey, R. J. (1997). The biphasic opening of the blood–brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neuroscience letters, 226(1), 33-36. https://doi.org/10.1016/S0304-3940(97)00239-5

Bhattacharya, S. K., & Muruganandam, A. V. (2003). Adaptogenic activity of Withania somnifera: an experimental study using a rat model of chronic stress. Pharmacology Biochemistry and Behavior, 75(3), 547-555. https://doi.org/10.1016/S0091-3057(03)00110-2

Chan, E. W. C., Lim, Y. Y., Ling, S. K., Tan, S. P., Lim, K. K., & Khoo, M. G. (2009). Caffeoylquinic acids from leaves of Etlingera species (Zingiberaceae). LWT-Food Science and Technology, 42(5), 1026-1030. https://doi.org/10.1016/j.lwt.2009.01.003

Cornelius, C., Crupi, R., Calabrese, V., Graziano, A., Milone, P., Pennisi, G., ... & Cuzzocrea, S. (2013). Traumatic brain injury: oxidative stress and neuroprotection. Antioxidants & redox signaling, 19(8), 836-853.

Fogacci, M. F., da Silva Barbirato, D., Amaral, C. D. S. F., da Silva, P. G., de Oliveira Coelho, M., Bertozi, G., ... & Leão, A. T. T. (2016). No association between periodontitis, preterm birth, or intrauterine growth restriction: experimental study in Wistar rats. American Journal of obstetrics and Gynecology, 214(6), 749-e1. https://doi.org/10.1016/j.ajog.2015.12.008

Gobé, G., Willgoss, D., Hogg, N., Schoch, E., & Endre, Z. (1999). Cell survival or death in renal tubular epithelium after ischemia-reperfusion injury. Kidney international, 56(4), 1299-1304. https://doi.org/10.1046/j.1523-1755.1999.00701.x

Hall, E. D., Vaishnav, R. A., & Mustafa, A. G. (2010). Antioxidant therapies for traumatic brain injury. Neurotherapeutics, 7(1), 51-61.

Islam, M. R., Beg, M. D., & Gupta, A. (2013). Characterization of laccase-treated kenaf fibre reinforced recycled polypropylene composites. BioResources, 8(3), 3753-3770.

Jagadish, P. C., Latha, K. P., Mudgal, J., & Nampurath, G. K. (2016). Extraction, characterization and evaluation of Kaempferia galanga L.(Zingiberaceae) rhizome extracts against acute and chronic inflammation in rats. Journal of Ethnopharmacology, 194, 434-439. https://doi.org/10.1016/j.jep.2016.10.010

Kanjanapothi, D., Panthong, A., Lertprasertsuke, N., Taesotikul, T., Rujjanawate, C., Kaewpinit, D., ... & Pitasawat, B. (2004). Toxicity of crude rhizome extract of Kaempferia galanga L.(Proh Hom). Journal of Ethnopharmacology, 90(2-3), 359-365. https://doi.org/10.1016/j.jep.2003.10.020

Kurniawan, A., Turchan, A., Utomo, B., Parenrengi, M. A., & Fauziah, D. (2022). The change of BDNF expression in traumatic brain injury after Kaempferia galanga L. administration: An experimental study. International Journal of Health & Medical Sciences, 5(1), 101-113. https://doi.org/10.21744/ijhms.v5n1.1847

Liu, G. D., Sheng, Z., Wang, Y. F., Han, Y. L., Zhou, Y., & Zhu, J. Q. (2016). Glutathione peroxidase 1 expression, malondialdehyde levels and histological alterations in the liver of Acrossocheilus fasciatus exposed to cadmium chloride. Gene, 578(2), 210-218. https://doi.org/10.1016/j.gene.2015.12.034

Lorente, L., Martín, M. M., Abreu-González, P., Ramos, L., Argueso, M., Cáceres, J. J., ... & Jiménez, A. (2015). Association between serum malondialdehyde levels and mortality in patients with severe brain trauma injury. Journal of neurotrauma, 32(1), 1-6.

Mohanty, J. P., Nath, L. K., Bhuyan, N., & Mariappan, G. (2008). Evaluation of antioxidant potential of Kaempferia rotunda Linn. Indian journal of pharmaceutical sciences, 70(3), 362.

Mustafa, R. A., Hamid, A. A., Mohamed, S., & Bakar, F. A. (2010). Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. Journal of food science, 75(1), C28-C35.

Noro, T., Miyase, T., Kuroyanagi, M., Ueno, A., & Fukushima, S. (1983). Monoamine oxidase inhibitor from the rhizomes of Kaempferia galanga L. Chemical and pharmaceutical bulletin, 31(8), 2708-2711.

Notoatmodjo, S. (2003). Prinsip-prinsip dasar ilmu kesehatan masyarakat. Jakarta: Rineka Cipta, 10.

Othman, R., Ibrahim, H., Mohd, M. A., Mustafa, M. R., & Awang, K. (2006). Bioassay-guided isolation of a vasorelaxant active compound from Kaempferia galanga L. Phytomedicine, 13(1-2), 61-66. https://doi.org/10.1016/j.phymed.2004.07.004

Pisoschi, A. M., & Negulescu, G. P. (2011). Methods for total antioxidant activity determination: a review. Biochem Anal Biochem, 1(1), 106.

Rodrigo, R., Fernandez-Gajardo, R., Gutierrez, R., Manuel Matamala, J., Carrasco, R., Miranda-Merchak, A., & Feuerhake, W. (2013). Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 12(5), 698-714.

Roozenbeek, B., Maas, A. I., & Menon, D. K. (2013). Changing patterns in the epidemiology of traumatic brain injury. Nature Reviews Neurology, 9(4), 231-236.

Suh, S. W., Chen, J. W., Motamedi, M., Bell, B., Listiak, K., Pons, N. F., ... & Frederickson, C. J. (2000). Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain research, 852(2), 268-273. https://doi.org/10.1016/S0006-8993(99)02095-8

Sutaryono, S., Andasari, S.D., Hidayati, N. (2016). Pengaruh Pemberian Campuran Bee Pollen, Rimpang Kencur, Kunyit dan Biji Pinang Terhadap Penurunan Kadar Malondialdehida (MDA) pada Tikus Wistar Pasca Paparan Streptozotocin.

Umar, M. I., Asmawi, M. Z., Sadikun, A., Atangwho, I. J., Yam, M. F., Altaf, R., & Ahmed, A. (2012). Bioactivity-guided isolation of ethyl-p-methoxycinnamate, an anti-inflammatory constituent, from Kaempferia galanga L. extracts. Molecules, 17(7), 8720-8734.

Vittalrao, A. M., Shanbhag, T., Kumari, M., Bairy, K. L., & Shenoy, S. (2011). Evaluation of antiinflammatory and analgesic activities of alcoholic extract of Kaempferia galanga in rats. Indian J Physiol Pharmacol, 55(1), 13-24.

Weber, B., Lackner, I., Haffner-Luntzer, M., Palmer, A., Pressmar, J., Scharffetter-Kochanek, K., ... & Kalbitz, M. (2019). Modeling trauma in rats: similarities to humans and potential pitfalls to consider. Journal of translational medicine, 17(1), 1-19.

Wido, A., Bajamal, A. H., Apriawan, T., Parenrengi, M. A., & Al Fauzi, A. (2022). Deep vein thrombosis prophylaxis use in traumatic brain injury patients in tropical climate. International Journal of Health & Medical Sciences, 5(1), 67-74. https://doi.org/10.21744/ijhms.v5n1.1840

Yao, F., Huang, Y., Wang, Y., & He, X. (2018). Anti-inflammatory diarylheptanoids and phenolics from the rhizomes of kencur (Kaempferia galanga L.). Industrial Crops and Products, 125, 454-461. https://doi.org/10.1016/j.indcrop.2018.09.026

Published

2022-02-04

How to Cite

Sagita, M. B., Turchan, A., Utomo, B., Fauzi, A. A., & Fauziah, D. (2022). Expression malondialdehyde (MDA) of brain after injury with the extract of kencur (Kaempferia Galanga L): Experimental study wistar rats. International Journal of Health & Medical Sciences, 5(1), 114-121. https://doi.org/10.21744/ijhms.v5n1.1848

Most read articles by the same author(s)