Estimation of existing and contribution of mangrove restoration by REMAJA PHE ONWJ Program to carbon stocks in coastal Karawang Regency, Indonesia

https://doi.org/10.21744/ijle.v7n1.2283

Authors

  • Rahman Pattimura University, Ambon, Indonesia
  • Luisa Febrina Amalo IPB University, West Java, Bogor, Indonesia
  • Marfian Dwidima Putra IPB University, West Java, Bogor, Indonesia
  • Luluk Dwi Wulan Handayani IPB University, West Java, Bogor, Indonesia
  • Gilang Munggaran IPB University, West Java, Bogor, Indonesia
  • Hadi Supardi PT. Pertamina Hulu Energi Offshore North West Java, Jakarta, Indonesia
  • L.M. Alfin Agushara Bena PT. Pertamina Hulu Energi Offshore North West Java, Jakarta, Indonesia
  • Arif Rahman PT. Pertamina Hulu Energi Offshore North West Java, Jakarta, Indonesia

Keywords:

carbon stock, mangrove regeneration, mangrove rehabilitation, REMAJA PHE ONWJ program

Abstract

One of the efforts to mitigate climate change is the preservation of mangrove ecosystems because of their function as carbon storage and absorbers. The coast of Karawang Regency is a potential area for mangrove ecosystems, but information on existing carbon stocks and sequestration is not yet known, let alone the contribution of mangrove rejuvenation, including from rehabilitation seedlings. The study results show that the total carbon stock on the coast of Karawang Regency ranges from 13.75 – 56.89 MgC ha–1  or 5,799.88 – 24,003.58 MgC. This value is obtained from the contribution of three main species, namely A. marina of 4.38 – 15.38 MgC ha–1, R. apiculata of 5.80 – 24.63 MgC ha–1, and R. mucronata of 3.57 – 16.88 MgC ha–1. The carbon sequestration value (CO2-equivalent) on the coast of Karawang Regency ranges from 50.40 – 208.58 MgCO2-eq ha–1 or an overall of 21,266.23 – 88,013.14 MgCO2-eq. This value was obtained from the contribution of three main species, namely A. marina of 16.07 – 56.41 MgCO2-eq ha–1, R. apiculata of 21.25 – 90.29 MgCO2-eq ha–1, and R. mucronata of 13.08 – 61.88 MgCO2-eq ha–1. The total contribution value of stock and carbon sequestration from mangrove rejuvenation in the simulation up to 10 years of diameter growth reached 24.58 MgC year–1  and 90.14 MgCO2-eq year–1. These values are an accumulation of three categories of youth, namely the existing sapling category (7.86 MgC year–1 and 28.82 MgCO2-eq year–1), the existing seedling category (4.72 MgC year–1 and 17.32 MgCO2-eq year–1), and the seedling category (3.64 MgC year–1  and 13.33 MgCO2-eq year–1).

Downloads

Download data is not yet available.

References

Adame, M. F., Santini, N. S., Tovilla, C., Vázquez-Lule, A., Castro, L., & Guevara, M. (2015). Carbon stocks and soil sequestration rates of tropical riverine wetlands. Biogeosciences, 12(12), 3805-3818.

Agaton, C. B., & Collera, A. A. (2022). Now or later? Optimal timing of mangrove rehabilitation under climate change uncertainty. Forest Ecology and Management, 503, 119739. https://doi.org/10.1016/j.foreco.2021.119739

Aida, G. R., Wardiatno, Y. U. S. L. I., Fahrudin, A. C. H. M. A. D., & Kamal, M. M. (2016). Model dinamik nilai ekonomi ekosistem mangrove di wilayah Pesisir Tangerang, Provinsi Banten. Bonorowo Wetlands, 6(1), 26-42.

Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual review of marine science, 6(1), 195-219.

Badjeck, M. C., Allison, E. H., Halls, A. S., & Dulvy, N. K. (2010). Impacts of climate variability and change on fishery-based livelihoods. Marine policy, 34(3), 375-383. https://doi.org/10.1016/j.marpol.2009.08.007

Barrientos, N. E. G., & Gómez, R. F. (2020). Didactic material for preparation observation and estimation content on subject recreational activities in nature. International Journal of Life Sciences & Earth Sciences, 3(1), 15-19. https://doi.org/10.31295/ijle.v3n1.140

Bengen, D. G. (2004). Pedoman teknis pengenalan dan pengelolaan ekosistem mangrove. PKSPL-IPB. Bogor.

Brander, K. (2010). Impacts of climate change on fisheries. Journal of Marine Systems, 79(3-4), 389-402. https://doi.org/10.1016/j.jmarsys.2008.12.015

Chen, J. M., Liu, J., Leblanc, S. G., Lacaze, R., & Roujean, J. L. (2003). Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sensing of Environment, 84(4), 516-525. https://doi.org/10.1016/S0034-4257(02)00150-5

Cheung, W. W., Lam, V. W., Sarmiento, J. L., Kearney, K., Watson, R., & Pauly, D. (2009). Projecting global marine biodiversity impacts under climate change scenarios. Fish and fisheries, 10(3), 235-251.

Comley, B. W. T., & McGuinness, K. A. (2005). Above-and below-ground biomass, and allometry, of four common northern Australian mangroves. Australian Journal of Botany, 53(5), 431-436.

Donato, D. C., Kauffman, J. B., Mackenzie, R. A., Ainsworth, A., & Pfleeger, A. Z. (2012). Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration. Journal of environmental management, 97, 89-96. https://doi.org/10.1016/j.jenvman.2011.12.004

Drinkwater, K. F., Beaugrand, G., Kaeriyama, M., Kim, S., Ottersen, G., Perry, R. I., ... & Takasuka, A. (2010). On the processes linking climate to ecosystem changes. Journal of Marine Systems, 79(3-4), 374-388. https://doi.org/10.1016/j.jmarsys.2008.12.014

Fromard, F., Puig, H., Mougin, E., Marty, G., Betoulle, J. L., & Cadamuro, L. (1998). Structure, above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana. Oecologia, 115(1), 39-53.

Hairiah, K., & Rahayu, S. (2007). Pengukuran karbon tersimpan di berbagai macam penggunaan lahan. World agroforestry centre. Bogor, 77.

Intergovernmental Panel on Climate Change [IPCC]. (2001). Climate Change 2001: The Scientific Basis. Cambridge (GB): Cambridge University Press.

Jones, P. D. (2002). Greenhouse effect and climate data. In Encyclopedia of Physical Sciences and Technology (pp. 87-106). Academic Press.

Nopiana, M., Yulianda, F., & Fahrudin, A. (2020). Condition of shore and mangrove area in the coastal area of Karawang Regency, Indonesia. Aquaculture, Aquarium, Conservation & Legislation, 13(2), 553-569.

Ong, J. E., Gong, W. K., & Wong, C. H. (2004). Allometry and partitioning of the mangrove, Rhizophora apiculata. Forest Ecology and Management, 188(1-3), 395-408. https://doi.org/10.1016/j.foreco.2003.08.002

Otero, V., Lucas, R., Van De Kerchove, R., Satyanarayana, B., Mohd-Lokman, H., & Dahdouh-Guebas, F. (2020). Spatial analysis of early mangrove regeneration in the Matang Mangrove Forest Reserve, Peninsular Malaysia, using geomatics. Forest Ecology and Management, 472, 118213. https://doi.org/10.1016/j.foreco.2020.118213

Rachmawati, D., Setyobudiandi, I., & Hilmi, E. (2014). Potensi estimasi karbon tersimpan pada vegetasi mangrove di wilayah pesisir Muara Gembong Kabupaten Bekasi. Omni-Akuatika, 10(2).

Rahman, R., Effendi, H., & Rusmana, I. (2017). Estimasi stok dan serapan karbon pada mangrove di Sungai Tallo, Makassar. Jurnal Ilmu Kehutanan, 11(1), 19-28.

Rahman, R., Effendi, H., Rusmana, I., Yulianda, F., & Wardiatno, Y. (2020). Pengelolaan ekosistem mangrove untuk ruang terbuka hijau sebagai mitigasi gas rumah kaca di kawasan Sungai Tallo Kota Makassar. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 10(2), 320-328.

Rahman, R., Wardiatno, Y., Yulianda, F., & Rusmana, I. (2020). Produksi serasah musiman pada berbagai spesies mangrove di Pesisir Kabupaten Muna Barat, Sulawesi Tenggara. Jurnal Ilmu Pertanian Indonesia, 25(3), 323-333.

Rahman, R., Wardiatno, Y., Yulianda, F., Effendi, H., & Rusmana, I. (2018). Fluks Gas Rumah Kaca Co2, Ch4 Dan N2o Pada Lahan Ekosistem Mangrove Di Sungai Tallo, Makassar (Fluxes of Greenhouse Gases Co2, Ch4 and N2o From Mangrove Soil in Tallo River, Makassar). Jurnal Biologi Tropis, 18(2), 149-158.

Rahman, R., Yanuarita, D., & Nurdin, N. (2014). Struktur Komunitas Mangrovedi Kabupaten Muna. Torani Journal of Fisheries and Marine Science, 24(2).

Rahman, W. Y., Rusmana, I., & Wardiatno, Y. (2020). Seasonal fluxes of CO2, CH4 and N2O greenhouse gases in various mangrove species on the coast of West Muna Regency, Southeast Sulawesi, Indonesia. Plant Archives, 20(2), 4301-4311.

Rahman., Wardiatno Y., Yulianda F., Rusmana I., Bengen D.G., (2020). Metode dan Analisis Studi Ekosistem Mangrove. IPB Press. 124p.

Van Breugel, M., Ransijn, J., Craven, D., Bongers, F., & Hall, J. S. (2011). Estimating carbon stock in secondary forests: Decisions and uncertainties associated with allometric biomass models. Forest ecology and management, 262(8), 1648-1657. https://doi.org/10.1016/j.foreco.2011.07.018

Wang, H., Zhou, S., Li, X., Liu, H., Chi, D., & Xu, K. (2016). The influence of climate change and human activities on ecosystem service value. Ecological Engineering, 87, 224-239. https://doi.org/10.1016/j.ecoleng.2015.11.027

Rahman. (2020). Pengelolaan Ekosistem Mangrove Berbasis Dinamika Stok Karbon dan Fluks Gas Rumah Kaca di Pesisir Kabupaten Muna Barat (Doctoral dissertation, IPB University).

Watumlawar, Y., Sondak, C., Schaduw, J., Mamuaja, J., Darwisito, S., & Andaki, J. (2019). Produksi dan laju dekomposisi serasah mangrove (Sonneratia sp) di kawasan hutan mangrove Bahowo, Kelurahan Tongkaina Kecamatan Bunaken Sulawesi Utara. Jurnal Pesisir dan Laut Tropis, 7(1), 1-6.

Yulianda, F., Rusmana, I., & Wardiatno, Y. (2019). Production ratio of seedlings and density status of mangrove ecosystem in coastal areas of Indonesia. Advances in Environmental Biology, 13(6), 13-21.

Published

2024-07-20

How to Cite

Rahman, R., Amalo, L. F., Putra, M. D., Handayani, L. D. W., Munggaran, G., Supardi, H., Bena, L. M. A. A., & Rahman, A. (2024). Estimation of existing and contribution of mangrove restoration by REMAJA PHE ONWJ Program to carbon stocks in coastal Karawang Regency, Indonesia. International Journal of Life Sciences and Earth Sciences, 7(1), 38-47. https://doi.org/10.21744/ijle.v7n1.2283