DS18B20 sensor calibration compared with fluke hart scientific standard sensor

https://doi.org/10.31295/ijpm.v4n1.1225

Authors

  • Asep Nata Permana Physics Study Program, Faculty of Mathematics and Natural Sciences, Udayana University, Indonesia
  • I Made Satriya Wibawa Physics Study Program, Faculty of Mathematics and Natural Sciences, Udayana University, Indonesia
  • I Ketut Putra Physics Study Program, Faculty of Mathematics and Natural Sciences, Udayana University, Indonesia

Keywords:

calibration, DS18B20 sensor, fluke hart, temperature chamber

Abstract

The DS18B20 sensor calibration has been conducted using a fluke hart with a temperature chamber at the center for meteorology, climatology, and geophysics region III Denpasar. The calibration process is done by stabilizing the temperature in the chamber, then the temperature on the DS18B20 sensor and the standard thermometer in the chamber are read and compared. The setpoints used were 10 oC, 20 oC, 30 oC and 40 oC each set point was read four times. The results of the calculation of the standard deviation at each setpoint are  0,39 oC,  0,12 oC,  0,00 oC,  0,00 oC and the results of the uncertainty for each setpoint are 0,65 oC,  0,20 oC,  0,18 oC,  0,18 oC. The results of the DS18B20 sensor calibration using a fluke hart with a temperature chamber obtained the highest standard deviation value of 0,39 oC and the highest uncertainty value was 0,65 oC. This value indicates that the DS18B20 sensor calibrated with a standard tool at the 10 oC set point has not met the standard value applied by WMO, which is ±0.3 oC.

Downloads

Download data is not yet available.

References

Bamodu, O., Osebor, F., Xia, L., Cheshmehzangi, A., & Tang, L. (2018). Indoor environment monitoring based on humidity conditions using a low-cost sensor network. Energy Procedia, 145, 464-471. https://doi.org/10.1016/j.egypro.2018.04.093

Bamodu, O., Xia, L., & Tang, L. (2017). An indoor environment monitoring system using low-cost sensor network. Energy Procedia, 141, 660-666. https://doi.org/10.1016/j.egypro.2017.11.089

BMKG (2013). Metode Kalibrasi Meteorologi, Laboratorium Kalibrasi BMKG, Jakarta.

Bohórquez, M. A. M., Gomez, J. M. E., & Marquez, J. M. A. (2009). A new and inexpensive temperature-measuring system: Application to photovoltaic solar facilities. Solar Energy, 83(6), 883-890. https://doi.org/10.1016/j.solener.2008.12.007

Chan, Y. (2011). Sistem Pengukuran Teknik, Universitas Darma Persada, Jakarta.

Dhofir, A. (2014). Pengukuran Suhu Termometer, Universitas Muhammadiyah Malang, Jawa Timur.

Frei, M., Deb, C., Stadler, R., Nagy, Z., & Schlueter, A. (2020). Wireless sensor network for estimating building performance. Automation in Construction, 111, 103043. https://doi.org/10.1016/j.autcon.2019.103043

Galiancoli, D. (2001). Fisika Edisi Ke-5 Jilid 1, Erlangga, Jakarta.

Kapen, P. T., Mohamadou, Y., Momo, F., Jauspin, D. K., Kanmagne, N., & Jordan, D. D. (2019). Development of a neonatal incubator with phototherapy, biometric fingerprint reader, remote monitoring, and heart rate control adapted for developing countries hospitals. Journal of Neonatal Nursing, 25(6), 298-303. https://doi.org/10.1016/j.jnn.2019.07.011

Lewis, A. J., Campbell, M., & Stavroulakis, P. (2016). Performance evaluation of a cheap, open source, digital environmental monitor based on the Raspberry Pi. Measurement, 87, 228-235. https://doi.org/10.1016/j.measurement.2016.03.023

Nagy, Z., Rossi, D., Hersberger, C., Irigoyen, S. D., Miller, C., & Schlueter, A. (2014). Balancing envelope and heating system parameters for zero emissions retrofit using building sensor data. Applied energy, 131, 56-66. https://doi.org/10.1016/j.apenergy.2014.06.024

Simbeye, D. S., Zhao, J., & Yang, S. (2014). Design and deployment of wireless sensor networks for aquaculture monitoring and control based on virtual instruments. Computers and Electronics in Agriculture, 102, 31-42. https://doi.org/10.1016/j.compag.2014.01.004

Vega, F. A. O., Ríos, A. P. M., Saraz, J. A. O., Quiroz, L. G. V., & Damasceno, F. A. (2020). Assessment of black globe thermometers employing various sensors and alternative materials. Agricultural and Forest Meteorology, 284, 107891. https://doi.org/10.1016/j.agrformet.2019.107891

Published

2021-03-09

How to Cite

Permana, A. N., Wibawa, I. M. S., & Putra, I. K. (2021). DS18B20 sensor calibration compared with fluke hart scientific standard sensor. International Journal of Physics & Mathematics, 4(1), 1-7. https://doi.org/10.31295/ijpm.v4n1.1225