General radiographic patient dose monitoring using conformity test data

https://doi.org/10.21744/irjeis.v7n6.1953

Authors

  • I Ketut Putra Physics Faculty of Mathematics and Natural Sciences Udayana University, Denpasar, Indonesia
  • Gusti Agung Ayu Ratnawati Physics Faculty of Mathematics and Natural Sciences Udayana University, Denpasar, Indonesia
  • Gusti Ngurah Sutapa Physics Faculty of Mathematics and Natural Sciences Udayana University, Denpasar, Indonesia

Keywords:

conformity test data, dosage monitoring, entrance surface air kerma (ESAK), entrance surface dose (ESD), radiographic, X-ray

Abstract

Currently, the Nuclear Energy Supervisory Agency (BAPETEN) is actively guiding users or license holders related to patient protection against radiation hazards or often referred to as radiation protection and safety on medical exposure. Protection against medical exposure became a big issue when the mandatory compliance test on X-ray equipment for diagnostic and interventional radiology was introduced. In addition, license holders through their medical practitioners are also required to use the level of medical exposure guidelines. While PERKA BAPETEN No. 9, 2011 concerning the Suitability Test of Diagnostic and Interventional Radiology X-Ray device, states that one of the test parameters that directly affect the patient's radiation dose and determine the feasibility of operating the X-Ray device to the patient is information on the dose or rate of radiation dose received by the patient. Monitoring doses with Entrance Surface Air Kerma (ESAK) or what is often referred to as ESD (entrance surface dose) using suitability conformity test data starting from 50,60,70,80,90 and 100 kVp with 20 mAs at SID 100 meters. The results of the research on the value of ESAK was 0.049 mGy, an ESAK value that still met the national I-DRL value from BAPETEN Regulation No. 1211/K/V/2021.

Downloads

Download data is not yet available.

References

Adler, A., Carlton, R., & Wold, B. (1992). A comparison of student radiographic reject rates. Radiologic technology, 64(1), 26-32.

Akhadi, M. (2000). Basics of Radiation Protection. Jakarta: Rineka Reserved.

Bonello, L., Camoin-Jau, L., Armero, S., Com, O., Arques, S., Burignat-Bonello, C., ... & Paganelli, F. (2009). Tailored clopidogrel loading dose according to platelet reactivity monitoring to prevent acute and subacute stent thrombosis. The American journal of cardiology, 103(1), 5-10. https://doi.org/10.1016/j.amjcard.2008.08.048

Costa, A. M., & Pelegrino, M. S. (2014). Evaluation of entrance surface air kerma from exposure index in computed radiography. Radiation Physics and Chemistry, 104, 198-200. https://doi.org/10.1016/j.radphyschem.2014.05.005

de Oliveira, E. C., & Lourenço, F. R. (2021). Data reconciliation applied to the conformity assessment of fuel products. Fuel, 300, 120936. https://doi.org/10.1016/j.fuel.2021.120936

Gabbert, F., Memon, A., & Wright, D. B. (2007). I saw it for longer than you: The relationship between perceived encoding duration and memory conformity. Acta psychologica, 124(3), 319-331. https://doi.org/10.1016/j.actpsy.2006.03.009

Horner, K., & Devlin, H. (1998). The relationship between mandibular bone mineral density and panoramic radiographic measurements. Journal of dentistry, 26(4), 337-343. https://doi.org/10.1016/S0300-5712(97)00020-1

Porto, L., Lunelli, N., Paschuk, S., Oliveira, A., Ferreira, J. L., Schelin, H., ... & Khoury, H. (2014). Evaluation of entrance surface air kerma in pediatric chest radiography. Radiation Physics and Chemistry, 104, 252-259. https://doi.org/10.1016/j.radphyschem.2014.02.014

Proost, J. H., & Meijer, D. K. (1992). MW/Pharm, an integrated software package for drug dosage regimen calculation and therapeutic drug monitoring. Computers in biology and medicine, 22(3), 155-163. https://doi.org/10.1016/0010-4825(92)90011-B

Putra, I. K. ., Ratnawati, G. A. A. ., & Sutapa, G. N. . (2020). Monitoring of patients using radiodiagnostic dosage EI (Exposure Index) on CR (Computed Radiography). International Research Journal of Engineering, IT & Scientific Research, 6(6), 45-49.

Ratnawati, I. G. A. A., Suandayani, N. K. T., & Sutapa, G. N. (2019). The Linearity of X-ray Devices Radiation Output and Its Relationship with Patient Thickness. International Journal of Physical Sciences and Engineering, 3(3), 1-6.

Ribeiro, L. A., & Yoshimura, E. M. (2008). Entrance surface dose measurements in pediatric radiological examinations. Radiation measurements, 43(2-6), 972-976. https://doi.org/10.1016/j.radmeas.2007.11.059

Rusmanto, T. (2016). Do audit firm size and their services matter on auditor independence: A Case of Indonesia. Journal of Business Studies Quarterly, 7(3), 1.

Sherrick, A. D., Brown, L. R., Harms, G. F., & Myers, J. L. (1994). The radiographic findings of fibrosing mediastinitis. Chest, 106(2), 484-489. https://doi.org/10.1378/chest.106.2.484

Sikumbang, A. S. (2018). Analysis of Radiation Doses on Mobile X-rays of Emergency Patients in the ICU Room. University of North Sumatra, Medan.

Suandayani, N. K. T., Sutapa, G. N., & Kasmawan, I. G. A. (2020). Quality control of X-rays with collimator and the beam alignment test tool. International Journal of Physical Sciences and Engineering, 4(3), 7-15.

Suryatika, I. B. M., Sutapa, G. N., & Kasmawan, I. G. A. (2019). Radiology patient dosage monitoring for local diagnostic reference level. International Research Journal of Engineering, IT & Scientific Research, 5(5), 26-31.

Susilo, S., & Setiowati, L. (2012). Application of Digital Radiography Tools in Photorontgen Service Development. Journal of Mathematics and Natural Sciences, State University of Semarang, 35(2), 145-150.

Sutapa, G. N., Yuliara, I. M., & Ratini, N. N. (2018). Verification of dosage and radiation delivery time breast cancer (Mammae Ca) with ISIS TPS. International journal of health sciences, 2(2), 78-88.

Vassileva, S. (2004). Bullous systemic lupus erythematosus. Clinics in dermatology, 22(2), 129-138.

Wilks, R. J. (1987). Principles of radiological physics. Churchill Livingstone.

Winkler, N. T. (1976, March). Quality control in diagnostic radiology. In Application of Optical Instrumentation in Medicine IV (Vol. 70, pp. 125-131). International Society for Optics and Photonics.

Yoo, W. J., Jeon, D., Seo, J. K., Shin, S. H., Han, K. T., Youn, W. S., ... & Lee, B. (2013). Development of a scintillating fiber-optic dosimeter for measuring the entrance surface dose in diagnostic radiology. Radiation measurements, 48, 29-34. https://doi.org/10.1016/j.radmeas.2012.11.001

Published

2021-10-22

How to Cite

Putra, I. K., Ratnawati, G. A. A., & Sutapa, G. N. (2021). General radiographic patient dose monitoring using conformity test data. International Research Journal of Engineering, IT & Scientific Research, 7(6), 219–224. https://doi.org/10.21744/irjeis.v7n6.1953

Issue

Section

Research Articles