Design and implementation the stability and direction of hexapod robot motion

https://doi.org/10.21744/irjeis.v8n6.2196

Authors

  • Syahban Rangkuti Department of Electrical Engineering, Faletehan University, Indonesia
  • Dwi Liestyowati Department of Electrical Engineering, Faletehan University, Indonesia
  • Arif Syaripudin Department of Electronics, Vocational High School 4 Bandung, Indonesia

Keywords:

hexapod robot, inertial measurement unit, motor servo, stability, ultrasonic sensor

Abstract

Robotics technology has developed rapidly and applied to various fields of work that cannot be done by humans. Many forms and types of robots used include the hexapod robot. The purpose of this research is to regulate the direction of the hexapod robot’s motion and be able to avoid obstacles to maintain the stability of its motion using a PID control system. In establishing a good control system, various types of sensors are used, those are ultrasonic and inertial measurement unit sensors. The shape of the hexapod robot is made to be integrated with the robot's legs. Each leg of the robot consists of 3 joints, joined by a servo motor. There are 18 servo motors. Eight ultrasonic sensors are used to detect surrounding objects, run well, and ability to avoid obstacles. The main orientation of the hexapod robot motion is to move forward, but if there are obstacles, it will find a solution to turn using ultrasonic sensors. An inertial measurement unit sensor is used to maintain the robot’s body’s stability.

Downloads

Download data is not yet available.

References

Abdulridha, H. M., & Jasem, H. N. (2017). Planning of motion strategy for hexapod robot using biogeography based optimization. Journal of University of Babylon, 25(5), 1870-1883.Andika, J., Salamah, K.S. (2018), Analisis kinematik pada robot hexapod, Jurnal Teknik Elektro, 9(2), 83-91.

Allen, W. A., & Wood, G. (2006). Defining and achieving financial stability. Journal of financial stability, 2(2), 152-172. https://doi.org/10.1016/j.jfs.2005.10.001

Arif, Y. M., & Kurniawan, F. (2013, November). Implementation of multi sensor system for MSR-H01 hexapod robot.

Artanayasa, I. W., & Giri, M. K. W. (2019). Learning models and authentic assessment on football skill learning achievement. International Journal of Physical Sciences and Engineering, 3(1), 22–31. https://doi.org/10.29332/ijpse.v3n1.246

Asrofi, M., Sumardi, S., & Setiyono, B. (2015). Stabilisasi Robot Berkaki 6 (Hexapod) Pada Bidang Miring Menggunakan 9 DOF IMU Berbasis Invers Kinematic. Transient: Jurnal Ilmiah Teknik Elektro, 4(1), 97-105.

Beatty Jr, M. F. (1986). Principles of engineering mechanics: Kinematics—the geometry of motion (Vol. 32). Springer Science & Business Media.

Chairunnas, A. (2017). PENERAPAN ALGORITMA TRIPOD GAIT PADA ROBOT HEXAPOD MENGGUNAKAN ARDUINO MEGA128 APPLICATION OF ALGORITHM OF THE TRIPOD GAIT ON A HEXAPOD ROBOTS USING ARDUINO MEGA128. Jurnal Penelitian Pos dan Informatika, 7(1).

Chen, S. Y., & Gong, S. S. (2017). Speed tracking control of pneumatic motor servo systems using observation-based adaptive dynamic sliding-mode control. Mechanical Systems and Signal Processing, 94, 111-128. https://doi.org/10.1016/j.ymssp.2017.02.025

Delcomyn, F., & Nelson, M. E. (2000). Architectures for a biomimetic hexapod robot. Robotics and Autonomous Systems, 30(1-2), 5-15. https://doi.org/10.1016/S0921-8890(99)00062-7

Ding, X., & Yang, F. (2016). Study on hexapod robot manipulation using legs. Robotica, 34(2), 468-481.

Dzulfiqar, M. D., & Widodo, N. S. (2019). Implementasi PID Navigasi Pelacakan Titik Api dengan Sensor Flame Array pada Robot Hexapod untuk Kontes Robot Pemadam Api Indonesia. Buletin Ilmiah Sarjana Teknik Elektro, 1(3), 131-143.

Espenschied, K. S., Quinn, R. D., Beer, R. D., & Chiel, H. J. (1996). Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot. Robotics and autonomous systems, 18(1-2), 59-64. https://doi.org/10.1016/0921-8890(96)00003-6

Gil, E., Escolà, A., Rosell, J. R., Planas, S., & Val, L. (2007). Variable rate application of plant protection products in vineyard using ultrasonic sensors. Crop Protection, 26(8), 1287-1297. https://doi.org/10.1016/j.cropro.2006.11.003

GÖKREM, L., CAN, M. S., & AYDIN, S. (2020). Hexapod Robot Design and Performance Comparison of Fuzzy and PID Control Methods. Balkan Journal of Electrical and Computer Engineering, 8(1), 88-97.

Henning, B., & Rautenberg, J. (2006). Process monitoring using ultrasonic sensor systems. Ultrasonics, 44, e1395-e1399. https://doi.org/10.1016/j.ultras.2006.05.048

Jazar, R. N. (2010). Theory of applied robotics. Springer Science+ Business Media, LLC.

Kurniawan, I. A., Feriyonika, F., & Pramono, S. (2018, October). Inverse dan Body Kinematics pada Robot Hexapod. In Prosiding Industrial Research Workshop and National Seminar (Vol. 9, pp. 115-123).

Lawrence, N. F., Qurthobi, A., & Barri, M. H. (2021). Perancangan Dan Implementasi Kendali Lingkar Tertutup Gait Robot Hexapod Untuk Mendeteksi, Menaiki Dan Menuruni Tangga. eProceedings of Engineering, 8(5).

Li, Q., Young, M., Naing, V., & Donelan, J. M. (2010). Walking speed estimation using a shank-mounted inertial measurement unit. Journal of biomechanics, 43(8), 1640-1643. https://doi.org/10.1016/j.jbiomech.2010.01.031

Mott, R. L. (2004). Machine elements in mechanical design. Pearson Educación.

Najmurrokhman, A., Wibowo, B. H., & Rafanca, N. A. (2018). Desain dan Implementasi Robot Heksapoda dengan Misi Pemadaman Api. JUMANJI (Jurnal Masyarakat Informatika Unjani), 1(1), 1-9.

Niku, S. B. (2020). Introduction to robotics: analysis, control, applications. John Wiley & Sons.

Nonami, K., Barai, R. K., Irawan, A., & Daud, M. R. (2014). Hydraulically actuated hexapod robots. M], Springer Japan.

Polizzi, K. M., Bommarius, A. S., Broering, J. M., & Chaparro-Riggers, J. F. (2007). Stability of biocatalysts. Current opinion in chemical biology, 11(2), 220-225. https://doi.org/10.1016/j.cbpa.2007.01.685

Rudy, R., & Lukas, L. (2018). Pergerakan Jalan Stabil Robot Hexapod di Atas Medan yang Tidak Rata. TESLA: Jurnal Teknik Elektro, 19(2), 211-220.

Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. (2011). Introduction to autonomous mobile robots. MIT press.

Sumba, E. F. S., Sumba, A. V. S., Castillo, G. A. L., & Rodríguez, J. A. P. (2020). Impact of distributed generation in the electrical system of Ecuador. International Journal of Physical Sciences and Engineering, 4(1), 1–10. https://doi.org/10.29332/ijpse.v4n1.389

Taghirad, H. D. (2013). Parallel robots: mechanics and control. CRC press.

Thilderkvist, D., & Svensson, S. (2015). Motion control of hexapod robot using model-based design.

Wahyudi, Y. R., Hadi, M. S., Handayani, A. N., & Sendari, S. (2017). Implementasi Sistem Kendali PD (Proportional Derivative) Pada Navigasi Wall Follower Robot Berkaki Enam (Hexapod).

Wajiansyah, A., Supriadi, S., Gaffar, A. F. O., & Putra, A. B. W. (2021). Modeling of 2-DOF Hexapod Leg Using Analytical Method. Journal of Robotics and Control (JRC), 2(5), 435-440.

Washabaugh, E. P., Kalyanaraman, T., Adamczyk, P. G., Claflin, E. S., & Krishnan, C. (2017). Validity and repeatability of inertial measurement units for measuring gait parameters. Gait & posture, 55, 87-93. https://doi.org/10.1016/j.gaitpost.2017.04.013

WIBOWO, I. K., PREISTIAN, D., & ARDILLA, F. (2021). Kontrol Keseimbangan Robot Hexapod EILERO menggunakan Fuzzy Logic. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 9(3), 533.

Wijayanto, A., Karim, K., & Pradana, S. (2020). Rancang Bangun Modul Praktikum Penggunaan Fotovoltaik. PoliGrid, 1(2), 39-48.

Yang, N., Li, D., Zhang, J., & Xi, Y. (2012). Model predictive controller design and implementation on FPGA with application to motor servo system. Control Engineering Practice, 20(11), 1229-1235. https://doi.org/10.1016/j.conengprac.2012.06.012

Yunardi, R. T., Muchadin, A., Priyanti, K. L., & Arifianto, D. (2019). Inverse Kinematics and PID Controller Implementation of Hexapod Robot for Wall Follower Navigation. INAJEEE (Indonesian Journal of Electrical and Electronics Engineering), 2(2), 57-62.

Published

2022-10-06

How to Cite

Rangkuti, S., Liestyowati, D., & Syaripudin, A. (2022). Design and implementation the stability and direction of hexapod robot motion. International Research Journal of Engineering, IT & Scientific Research, 8(6), 256–269. https://doi.org/10.21744/irjeis.v8n6.2196

Issue

Section

Research Articles