Interfacial tension test analysis as injection fluid on reservoir core

https://doi.org/10.21744/irjeis.v8n6.2202

Authors

  • Orlando Firdaus Master of Petroleum Engineering Study Program, Faculty of Earth and Energy Technology, Universitas Trisakti, Jakarta, Indonesia
  • Rini Setiati Master of Petroleum Engineering Study Program, Faculty of Earth and Energy Technology, Universitas Trisakti, Jakarta, Indonesia
  • Muh Taufiq Fathaddin Master of Petroleum Engineering Study Program, Faculty of Earth and Energy Technology, Universitas Trisakti, Jakarta, Indonesia
  • Pri Agung Rakhmanto Master of Petroleum Engineering Study Program, Faculty of Earth and Energy Technology, Universitas Trisakti, Jakarta, Indonesia
  • Suryo Prakoso Master of Petroleum Engineering Study Program, Faculty of Earth and Energy Technology, Universitas Trisakti, Jakarta, Indonesia
  • Dwi Atty Mardiana Master of Petroleum Engineering Study Program, Faculty of Earth and Energy Technology, Universitas Trisakti, Jakarta, Indonesia

Keywords:

emulsion, interfacial tension, middle phase, surfactant flooding, thermal stability

Abstract

 


In the petroleum industry, Enhanced Oil Recovery (EOR) technology has been developed to obtain increased oil recovery from reservoirs. One of the EOR methods is chemical EOR using a surfactant known as the surfactant flooding method. Surfactants have the ability to reduce the interfacial tension between oil and water in the rock matrix so that residual oil can be produced. There are several parameters that affect the performance of surfactants, among which will be discussed in this discussion, namely the middle phase emulsion obtained from the phase behavior test and the results from the Interfacial Tension (IFT) test. Based on the literature review, the method used in IFT uses the spinning drop method. Compatibility test of Fir wood SLS surfactant solution used with a concentration of 0.5% - 3% and a salinity of 4,000 - 110,000 ppm.

Downloads

Download data is not yet available.

References

Andriyan, R., Pratiwi, R., & Setiati, R. (2021, May). The utilization of Surfactant on enhanced oil recovery chemical injection to maintain energy in Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 780, No. 1, p. 012015). IOP Publishing.

Austad, T., & Strand, S. (1996). Chemical flooding of oil reservoirs 4. Effects of temperature and pressure on the middle phase solubilization parameters close to optimum flood conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 108(2-3), 243-252. https://doi.org/10.1016/0927-7757(95)03406-4

Azad, M. S. (2021). IFT Role on Oil Recovery During Surfactant Based EOR Methods. In Surfactants in Upstream E&P (pp. 115-148). Springer, Cham.

Chattopadhyay, D. K., & Webster, D. C. (2009). Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science, 34(10), 1068-1133. https://doi.org/10.1016/j.progpolymsci.2009.06.002

Cheng, P., Li, D., Boruvka, L., Rotenberg, Y., & Neumann, A. W. (1990). Automation of axisymmetric drop shape analysis for measurements of interfacial tensions and contact angles. Colloids and Surfaces, 43(2), 151-167. https://doi.org/10.1016/0166-6622(90)80286-D

Druetta, P., & Picchioni, F. (2020). Surfactant flooding: The influence of the physical properties on the recovery efficiency. Petroleum, 6(2), 149-162.

Fattahanisa, A., Setiati, R., & Kasmungin, S. (2018). The Effect of Interfacial Tension and Thermal Stability on Surfactant Injection. Journal of Earth Energy Science, Engineering, and Technology, 1(2).

Gbadamosi, A. O., Junin, R., Manan, M. A., Agi, A., & Yusuff, A. S. (2019). An overview of chemical

Gutiérrez, J. M., González, C., Maestro, A., Solè, I. M. P. C., Pey, C. M., & Nolla, J. (2008). Nano-emulsions: New applications and optimization of their preparation. Current opinion in colloid & interface science, 13(4), 245-251. https://doi.org/10.1016/j.cocis.2008.01.005

Hartono, A. D., Hakiki, F., Syihab, Z., Ambia, F., Yasutra, A., Sutopo, S., ... & Apriandi, R. (2017). Revisiting EOR projects in indonesia through integrated study: EOR screening, predictive model, and optimisation.

Karnanda, W., Benzagouta, M. S., AlQuraishi, A., & Amro, M. M. (2013). Effect of temperature, pressure, salinity, and surfactant concentration on IFT for surfactant flooding optimization. Arabian Journal of Geosciences, 6(9), 3535-3544.

Kayali, I. H., Liu, S., & Miller, C. A. (2010). Microemulsions containing mixtures of propoxylated sulfates with slightly branched hydrocarbon chains and cationic surfactants with short hydrophobes or PO chains. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 354(1-3), 246-251.

Khouw, M., Setiati, R., Pramadika, H., & Ridaliani, O. (2021, November). Analysis of correlation between interfacial tension and salinity in sodium lignosulfonate surfactant. In AIP Conference Proceedings (Vol. 2363, No. 1, p. 020012). AIP Publishing LLC.

Kosmulski, M., Gustafsson, J., & Rosenholm, J. B. (2004). Thermal stability of low temperature ionic liquids revisited. Thermochimica Acta, 412(1-2), 47-53. https://doi.org/10.1016/j.tca.2003.08.022

Meza, M. I. Z., Veliz, E. A. R., Anchundia, B. A., Lucas, G. C., & Ormaza, G. F. (2018). Ballast treated with asphalt emulsion, Megarok and San Jose. AASTHO standards. International Journal of Physical Sciences and Engineering, 2(2), 79–87. https://doi.org/10.29332/ijpse.v2n2.154

Meza, M. I. Z., Veliz, E. A. R., Mendoza, C. A. V., Delgado, R. A. C., & Ormaza, G. F. (2018). Comparison of studies through laboratory tests to loan material (ballast) of San Jose and AGRE S.A. quarries treated with asphalt emulsion or cement. International Journal of Physical Sciences and Engineering, 2(2), 50–67. https://doi.org/10.29332/ijpse.v1n2.146

Rao, D. N. (1997). A new technique of vanishing interfacial tension for miscibility determination. Fluid phase equilibria, 139(1-2), 311-324. https://doi.org/10.1016/S0378-3812(97)00180-5

Setiati, R., Adisoemarta, P. S., Fathaddin, M. T., Marpaung, T. S., Rinanti, A., & Satriabudi, J. (2022). THE USE OF BAGASSE SYNTHETIC SURFACTANTS AS MATERIAL FOR ENVIRONMENTALLY FRIENDLY POLICIES TO IMPLEMENT ENVIRONMENTAL MANAGEMENT. INDONESIAN JOURNAL OF URBAN AND ENVIRONMENTAL TECHNOLOGY, 104-114.

Sofla, S. J. D., Sharifi, M., & Sarapardeh, A. H. (2016). Toward mechanistic understanding of natural surfactant flooding in enhanced oil recovery processes: the role of salinity, surfactant concentration and rock type. Journal of Molecular Liquids, 222, 632-639. https://doi.org/10.1016/j.molliq.2016.07.086

Solans, C., Izquierdo, P., Nolla, J., Azemar, N., & Garcia-Celma, M. J. (2005). Nano-emulsions. Current opinion in colloid & interface science, 10(3-4), 102-110. https://doi.org/10.1016/j.cocis.2005.06.004

Suljanovi?, N., Muj?i?, A., Zajc, M., & Tasi?, J. F. (2004). Approximate computation of high-frequency characteristics for power line with horizontal disposition and middle-phase to ground coupling. Electric Power Systems Research, 69(1), 17-24. https://doi.org/10.1016/j.epsr.2003.07.005

Swadesi, B., Marhaendrajana, T., Siregar, H. P., & Mucharam, L. (2015). The Effect of Surfactant Characteristics on IFT to Improve Oil Recovery in Tempino Light Oil Field Indonesia. Journal of Engineering & Technological Sciences, 47(3).

Tavakkoli, O., Kamyab, H., Shariati, M., Mohamed, A. M., & Junin, R. (2022). Effect of nanoparticles on the performance of polymer/surfactant flooding for enhanced oil recovery: A review. Fuel, 312, 122867. https://doi.org/10.1016/j.fuel.2021.122867

Published

2022-10-09

How to Cite

Firdaus, O., Setiati, R., Fathaddin, M. T., Rakhmanto, P. A., Prakoso, S., & Mardiana, D. A. (2022). Interfacial tension test analysis as injection fluid on reservoir core. International Research Journal of Engineering, IT & Scientific Research, 8(6), 276–282. https://doi.org/10.21744/irjeis.v8n6.2202

Issue

Section

Research Articles