Development of atmega328 microcontroller based hydroponic plant watering automation tools

https://doi.org/10.21744/irjeis.v9n1.2261

Authors

  • I Wayan Supardi University of Udayana, Denpasar, Indonesia
  • S. Poniman University of Udayana, Denpasar, Indonesia
  • I Made Satriya Wibawa University of Udayana, Denpasar, Indonesia
  • IGA Putra Adnyana University of Udayana, Denpasar, Indonesia
  • I Putu Wahyu Pranata Kusuma Jaya University of Udayana, Denpasar, Indonesia
  • Ida Pertiwi Sari University of Udayana, Denpasar, Indonesia
  • Made Prama Yudistira University of Udayana, Denpasar, Indonesia

Keywords:

atmega328, automation tools, DHT11 sensor, hydroponic plant, microcontroller based

Abstract

The development of electronic technology in the era of globalization is very rapid. Utilization of this technology as a means to monitor soil conditions for agriculture, especially hydroponic plantations which are currently developing, to obtain optimal results it is necessary to monitor humidity and temperature conditions. This research will create a system that can maintain humidity and air temperature according to what plants need. The tools made consist of a temperature sensor, humidity sensor, ATMega328 microcontroller, ADC and water pump. Temperature and humidity sensors function to detect air temperature and humidity. The ADC functions to convert the voltage measurement results from temperature and humidity measurements into digital quantities which are then forwarded to the ATMega328 microcontroller to be processed into a digital display on the LCD. The ATMega328 microcontroller also regulates the ON and OFF of the water pump machine.

Downloads

Download data is not yet available.

References

Akkaya, R., & Kulaksiz, A. A. (2004). A microcontroller-based stand-alone photovoltaic power system for residential appliances. Applied Energy, 78(4), 419-431. https://doi.org/10.1016/j.apenergy.2003.09.005

Clark, J., Glasziou, P., Del Mar, C., Bannach-Brown, A., Stehlik, P., & Scott, A. M. (2020). A full systematic review was completed in 2 weeks using automation tools: a case study. Journal of clinical epidemiology, 121, 81-90. https://doi.org/10.1016/j.jclinepi.2020.01.008

Fatoni, A., Nugroho, D. D., & Irawan, A. (2015). Rancang bangun alat pembelajaran microcontroller berbasis atmega 328 di universitas serang raya. PROSISKO: Jurnal Pengembangan Riset dan Observasi Sistem Komputer, 2(1).

Fisher, D. K., & Kebede, H. (2010). A low-cost microcontroller-based system to monitor crop temperature and water status. Computers and electronics in agriculture, 74(1), 168-173. https://doi.org/10.1016/j.compag.2010.07.006

Frankowiak, M., Grosvenor, R., & Prickett, P. (2005). A review of the evolution of microcontroller-based machine and process monitoring. International journal of machine tools and manufacture, 45(4-5), 573-582. https://doi.org/10.1016/j.ijmachtools.2004.08.018

Gyori, B. M., Venkatachalam, G., Thiagarajan, P. S., Hsu, D., & Clement, M. V. (2014). OpenComet: an automated tool for comet assay image analysis. Redox biology, 2, 457-465. https://doi.org/10.1016/j.redox.2013.12.020

Madikizela, L. M., Ncube, S., & Chimuka, L. (2018). Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: a review. Science of the Total Environment, 636, 477-486. https://doi.org/10.1016/j.scitotenv.2018.04.297

Pasika, S., & Gandla, S. T. (2020). Smart water quality monitoring system with cost-effective using IoT. Heliyon, 6(7), e04096. https://doi.org/10.1016/j.heliyon.2020.e04096

Rainaldo, R., & Prakoso, Y. (2015). Detection of Ambient Temperature Using an LM35 Temperature Sensor Based on AVR ATMega16 Microcontroller. Jakarta: Department of Physics, Faculty of Mathematics and Natural Sciences, Jakarta State University.

Rangkuti, S. (2016). Arduino dan Proteus: Simulasi dan Praktik.

Rimawan, I. G. A., Supardi, I. W., & Astawa, I. P. A. (2018). Meat water content meter using copper electrode sensor based on AT89S52 microcontroller. International Research Journal of Engineering, IT & Scientific Research, 4(5), 1–6. https://doi.org/10.21744/irjeis.v4n5.278

Roosta, H. R., & Hamidpour, M. (2011). Effects of foliar application of some macro-and micro-nutrients on tomato plants in aquaponic and hydroponic systems. Scientia Horticulturae, 129(3), 396-402. https://doi.org/10.1016/j.scienta.2011.04.006

Sawita, I. K. A. S., Supardi, I. W., & Putra Adnyana, I. G. A. (2017). Alat Monitoring Suhu Melalui Aplikasi Android Menggunakan Sensor LM35 dan Modul SIM800L Berbasis Mikrokontroler ATMega16. Buletin Fisika, 18(2), 58.

Sharma, D., Jain, R. K., Sharma, R., Shan, B. P., & Shiney, O. J. (2021). Analysis of BPM/Pulse rate and its correlation with BMI for sprint activity using ATMega328 based Arduino Uno. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.07.401

Supardi, I.W., Wendri, N., Wibawa, I.M.S., Hakim, F., Apriadi, H. (2019). Infus information system design with SMS based on microcontroller ATmega328. Journal of Advanced Research in Dynamical and Control Systems, 11(9), 783-788

Utama, Y. A. K. U. (2016). Perbandingan Kualitas Antara Sensor Suhu dengan Menggunakan Arduino Pro Mini, e-jurnal NARODROID. Go to reference in article.

Vij, A., Vijendra, S., Jain, A., Bajaj, S., Bassi, A., & Sharma, A. (2020). IoT and machine learning approaches for automation of farm irrigation system. Procedia Computer Science, 167, 1250-1257. https://doi.org/10.1016/j.procs.2020.03.440

Published

2022-12-25

How to Cite

Supardi, I. W., Poniman, S., Wibawa, I. M. S., Adnyana, I. G. A. P., Jaya, I. P. W. P. K., Sari, I. P., & Yudistira, M. P. (2022). Development of atmega328 microcontroller based hydroponic plant watering automation tools. International Research Journal of Engineering, IT & Scientific Research, 9(1), 21–25. https://doi.org/10.21744/irjeis.v9n1.2261

Issue

Section

Research Articles