Monitoring system for a self-consumption photovoltaic system

https://doi.org/10.21744/irjeis.v10n2.2424

Authors

  • Joseph Joaquin Cajape-Palma Faculty of Engineering and Applied Sciences, Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Nathaly Juleidy-Cedeño Faculty of Engineering and Applied Sciences, Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Cristhian Leonel Cedeño-Cuzme Faculty of Engineering and Applied Sciences, Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Eric Eduardo Molina-Menendez Faculty of Engineering and Applied Sciences, Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Ramon Alexander Zambrano-Intriago Faculty of Computer Sciences, Universidad Técnica de Manabí, Portoviejo, Ecuador

Keywords:

automation, data transmission, monitoring system, photovoltaic systems, solar energy

Abstract

Climatic conditions and temperature levels often affect the infrastructure of photovoltaic systems, causing the scheduled generation to not be as expected. The objective was to design a monitoring system for an experimental 3.4 kWp photovoltaic plant that is located on the terrace of building 1 of the Faculty of Engineering and Applied Sciences of the Technical University of Manabí. An automation process was developed to optimize the performance of the installation, using an innovative perspective, the study determinedly faces the initial challenges associated with the software previously used for the design of a data storage system when incorporated into the institutional geoportal. The successful implementation of the Oxley Solar mobile application and, consequently, of the PZM-0043 module, emerges as a comprehensive solution that ensures the continuity of monitoring and contributes significantly to improving the efficiency of the photovoltaic system. The Oxley Solar app overcomes previous limitations by enabling efficient data extraction via Bluetooth and subsequent transmission via Wi-Fi, facilitating more effective storage. The result was the introduction of the PZM-0043 module that adds a layer of automation to the system, guaranteeing continuous data transmission to the database to be stored in the geoportal.

Downloads

Download data is not yet available.

References

Caballero, V., Valbuena, S., Vernet, D., & Zaballos, A. (2019). Ontology-defined middleware for internet of things architectures. Sensors, 19(5), 1163.

Guamán, J., Guevara, D., Vargas, C., Ríos, A., & Nogales, R. (2017). Solar manager: Acquisition, treatment and isolated photovoltaic system information visualization cloud platform. POWER, 42(170mA), 700Ma.

Gungor, V. C., & Lambert, F. C. (2006). A survey on communication networks for electric system automation. Computer Networks, 50(7), 877-897. https://doi.org/10.1016/j.comnet.2006.01.005

Hameed, Z., Hong, Y. S., Cho, Y. M., Ahn, S. H., & Song, C. K. (2009). Condition monitoring and fault detection of wind turbines and related algorithms: A review. Renewable and Sustainable energy reviews, 13(1), 1-39. https://doi.org/10.1016/j.rser.2007.05.008

Kannan, N., & Vakeesan, D. (2016). Solar energy for future world:-A review. Renewable and sustainable energy reviews, 62, 1092-1105. https://doi.org/10.1016/j.rser.2016.05.022

Kenisarin, M., & Mahkamov, K. (2007). Solar energy storage using phase change materials. Renewable and sustainable energy reviews, 11(9), 1913-1965. https://doi.org/10.1016/j.rser.2006.05.005

Mahian, O., Kianifar, A., Kalogirou, S. A., Pop, I., & Wongwises, S. (2013). A review of the applications of nanofluids in solar energy. International Journal of Heat and Mass Transfer, 57(2), 582-594. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037

Massie, M. L., Chun, B. N., & Culler, D. E. (2004). The ganglia distributed monitoring system: design, implementation, and experience. Parallel Computing, 30(7), 817-840. https://doi.org/10.1016/j.parco.2004.04.001

Oesterreich, T. D., & Teuteberg, F. (2016). Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Computers in industry, 83, 121-139. https://doi.org/10.1016/j.compind.2016.09.006

Reisi, A. R., Moradi, M. H., & Jamasb, S. (2013). Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review. Renewable and sustainable energy reviews, 19, 433-443. https://doi.org/10.1016/j.rser.2012.11.052

Salas, V., Olías, E., Barrado, A., & Lazaro, A. (2006). Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Solar energy materials and solar cells, 90(11), 1555-1578. https://doi.org/10.1016/j.solmat.2005.10.023

Sharma, V., & Chandel, S. S. (2013). Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review. Renewable and sustainable energy reviews, 27, 753-767. https://doi.org/10.1016/j.rser.2013.07.046

Veliz, J. K. M., Gualán, J. F. V., Mateo, F. A. L., Veléz, A. A. G., & Gámez, M. R. (2021). Isolated photovoltaic system for house: pre-sizing. International Research Journal of Engineering, IT & Scientific Research, 7(1), 25–32. https://doi.org/10.21744/irjeis.v7n1.1225

Published

2024-03-31

How to Cite

Cajape-Palma, J. J., Juleidy-Cedeño, N., Cedeño-Cuzme, C. L., Molina-Menendez, E. E., & Zambrano-Intriago, R. A. (2024). Monitoring system for a self-consumption photovoltaic system. International Research Journal of Engineering, IT & Scientific Research, 10(2), 20–27. https://doi.org/10.21744/irjeis.v10n2.2424

Issue

Section

Research Articles