Exergoeconomic and ecological efficiency analysis of steam generation system in ecuadorian tuna industry

Authors

  • Ángel Rafael Arteaga Linzan MsC. Universidad Técnica de Manabí, Facultad de Ciencias, Matemáticas, Físicas y Químicas, Portoviejo, Manabí Ecuador
  • Ángel Luis Brito Sauvanell Ph.D. Universidad de Oriente, Facultad de Mecanica, Santiago de Cuba, Cuba
  • María Isabel Fernández Parra Ph.D. Universidad de Oriente, Facultad de Mecanica, Santiago de Cuba, Cuba

Keywords:

Canned tuna, Steam boilers, Thermoeconomic, Exergy efficiency, ecological efficiency

Abstract

The present work was developed, in the steam generation system of a canned tuna canning plant in Ecuador, in which an exergoeconomic and ecological efficiency analysis was applied in combination, with a view to identifying and quantifying the irreversibility’s existing in the process under study, and evaluate the environmental impact produced by the fuel used by this type of facility. The methodology used combined from the literature consulted, the analysis of conventional exergy and exergoeconomic with the ecological efficiency. The results obtained were: the greater destruction of exergy was caused by the steam boiler (with more than 98% of the whole system) for an exergy efficiency of 25.12%; the unit thermoeconomic cost of steam generated by the system is $ 28.07 / Gj; and the ecological efficiency of the steam generator of the industrial plant is 46.27%, with the use of fuel oil 6 as fuel and a thermal efficiency of 84.91%. These results show the need to increase the parameters of steam generation (pressure and temperature), as well as to evaluate the possibility of using other fuel alternatives, to improve the energetic and ecological effects of the tuna plant under study.

Downloads

Download data is not yet available.

References

1. Nasiri, F., Aghbashlo, M., & Rafiee, S. (2017). Exergy analysis of an industrial-scale ultrafiltrated (UF) cheese production plant: a detailed survey. Heat and Mass Transfer, 53(2), 407-424.
2. Atabani, A. E., Mofijur, M., Masjuki, H. H., Badruddin, I. A., Chong, W. T., Cheng, S. F., & Gouk, S. W. (2014). A study of production and characterization of Manketti (Ricinodendron rautonemii) methyl ester and its blends as a potential biodiesel feedstock. Biofuel Research Journal, 1(4), 139-146.
3. Avadí, A., Bolaños, C., Sandoval, I., & Ycaza, C. (2015). Life cycle assessment of Ecuadorian processed tuna. The International Journal of Life Cycle Assessment, 20(10), 1415-1428.
4. Noa Hechavarría, J. J., & Brito Sauwanell, Á. L. (2010). Cálculo termoeconómico de los índices exergéticos del generador de vapor gb-3 de la refinería de petróleo “hermanos díaz”. Tecnología Química, 30(2).
5. Mazuera, H., Rojas, B., & Castang, C. (2014). Uso de los análisis de exergía y transferencia de calor para identificar ahorros potenciales de energía en calderas pirotubulares. El Hombre y la Máquina, (45), 7-17.
6. Nuñez Bosch, O. M. (2016). Análisis exergético de una central eléctrica de cogeneración. Centro Azúcar, 43(3), 10-20.
7. BoroumandJazi, G., Rismanchi, B., & Saidur, R. (2013). A review on exergy analysis of industrial sector. Renewable and Sustainable Energy Reviews, 27, 198-203.
8. Vu?kovi?, G. D., Stojiljkovi?, M. M., Vuki?, M. V., Stefanovi?, G. M., & Dedei?, E. M. (2014). Advanced exergy analysis and exergoeconomic performance evaluation of thermal processes in an existing industrial plant. Energy conversion and management, 85, 655-662.
9. Jiménez Borges, R., Madrigal Monzón, J. A., Lapido Rodríguez, M. J., & Vidal Moya, D. A. (2016). Método para la evaluación de la eficiencia e impacto ambiental de un generador de vapor. Ingeniería Energética, 37(2), 135-143.
10. Cardu, M., & Baica, M. (1999). Regarding a global methodology to estimate the energy–ecologic efficiency of thermopower plants. Energy Conversion and management, 40(1), 71-87.
11. Braga, L. B., Silveira, J. L., Da Silva, M. E., Tuna, C. E., Machin, E. B., & Pedroso, D. T. (2013). Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis. Renewable and Sustainable Energy Reviews, 28, 166-173.
12. Silveira, J. L., de Queiroz Lamas, W., Tuna, C. E., de Castro Villela, I. A., & Miro, L. S. (2012). Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital. Renewable and Sustainable Energy Reviews, 16(5), 2894-2906.
13. Bejan, A. (2013). Entropy generation minimization, exergy analysis, and the constructal law. Arabian Journal for Science and Engineering, 38(2), 329-340.
14. Coronado, C. R., Carvalho Jr, J. A., Quispe, C. A., & Sotomonte, C. R. (2014). Ecological efficiency in glycerol combustion. Applied Thermal Engineering, 63(1), 97-104.
15. Villa, A. A. O., Campos, R. J. A., Dutra, J. C. C., Recarte, J., & Guerrero, H. (2014). Numerical analysis of energetic, exergetic and ecological efficiency by using natural gas and biogas in cogeneration system. International Journal of Mechanical Engineering and Automation, 1(1), 31-40.
16. Vu?kovi?, G. D., Stojiljkovi?, M. M., & Vuki?, M. V. (2015). First and second level of exergy destruction splitting in advanced exergy analysis for an existing boiler. Energy Conversion and Management, 104, 8-16.
17. Avadí, A., & Fréon, P. (2013). Life cycle assessment of fisheries: a review for fisheries scientists and managers. Fisheries Research, 143, 21-38.
18. Gómez, M. T., Iglesias, A. M., López, R. T., & Bugallo, P. B. (2016). Towards sustainable systems configurations: application to an existing fish and seafood canning industry. Journal of cleaner production, 129, 374-383.
19. Arteaga-Linzan, Á. R., Fernández-Parra, M. I., & Brito-Sauvanell, Á. L. (2017). Energy-Economic Evaluation in the Production of Canned Tuna in Ecuadorian Industry. Revista Ciencias Técnicas Agropecuarias, 26(3).
20. Bejan, A. (1996). Entropy generation minimization: The new thermodynamics of finite?size devices and finite?time processes. Journal of Applied Physics, 79(3), 1191-1218.
21. Atmaca, A., & Yumruta?, R. (2014). Thermodynamic and exergoeconomic analysis of a cement plant: Part II–Application. Energy Conversion and Management, 79, 799-808.
22. Tsatsaronis, G., & Winhold, M. (1985). Exergoeconomic analysis and evaluation of energy-conversion plants—I. A new general methodology. Energy, 10(1), 69-80.
23. Madeira, J. G. F., Boloy, R. A. M., Delgado, A. R. S., Lima, F. R., Coutinho, E. R., & de Castro Pereira Filho, R. (2017). Ecological analysis of hydrogen production via biogas steam reforming from cassava flour processing wastewater. Journal of cleaner production, 162, 709-716.
24. Gao, B., Bi, Q., Nie, Z., & Wu, J. (2015). Experimental study of effects of baffle helix angle on shell-side performance of shell-and-tube heat exchangers with discontinuous helical baffles. Experimental thermal and fluid Science, 68, 48-57.
25. Anozie, A. N., & Ayoola, P. O. (2012). The influence of throughput on thermodynamic efficiencies of a Thermal Power Plant. International Journal of Energy Engineering, 2(5), 266-272.
26. Saidur, R., Ahamed, J. U., & Masjuki, H. H. (2010). Energy, exergy and economic analysis of industrial boilers. Energy policy, 38(5), 2188-2197.
27. Delgado, G. R. E., Meza, A. K. T., & García, A. E. G. (2018). Resilient Factors in Students with Disabilities. International Research Journal of Management, IT and Social Sciences (IRJMIS), 5(2), 23-31.
28. Mora, M. M., Espinosa, M. R., & Delgado, M. R. (2018). Approach of Processes for the Distribution of Economic Resources in Public University of Ecuador. International Research Journal of Management, IT and Social Sciences (IRJMIS), 5(1), 25-35.
29. Cedeño, M. L. G., Meza, A. K. T., & Mejía, R. G. C. (2018). Resilience and Support Networks for University Students with Disabilities. International Research Journal of Management, IT and Social Sciences (IRJMIS), 5(2), 164-174.

Published

2018-03-27

How to Cite

Linzan, Ángel R. A., Sauvanell, Ángel L. B., & Parra, M. I. F. (2018). Exergoeconomic and ecological efficiency analysis of steam generation system in ecuadorian tuna industry. International Research Journal of Engineering, IT & Scientific Research, 4(2), 52–62. Retrieved from https://sloap.org/journals/index.php/irjeis/article/view/92

Issue

Section

Research Articles