Synthesis and characterization of permanent magnetic oxide system Ba1-x-yLaxCeyFe12O19 system doped with La-Ce metal using wet mechanical milling method

https://doi.org/10.21744/ijcms.v4n1.1797

Authors

  • I Gusti Agung Putra Adnyana Program of Physics study, Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Denpasar, Indonesia
  • I Ketut Sukarasa Program of Physics study, Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Denpasar, Indonesia
  • Komang Ngurah Suarbawa Program of Physics study, Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Denpasar, Indonesia

Keywords:

Barium hexaferrite, crystal structure, mechanical milling, particle morphology, substitution of La and Ce

Abstract

The development of permanent magnet-based rare earth metals becomes a serious problem if the raw materials are difficult to find. The solution chosen is to utilize an oxide-based permanent magnet with little substitution of rare earth metals. In this study presented a permanent magnetic synthesis of barium hexaferrite-based oxides that were doped with La and Ce atoms. The synthesis of this material uses the wet mechanical milling technique to obtain the single phase permanent magnet system Ba1-x-yLaxCeyFe12O19 (x = 0, 0.02, 0.04 and y = 0. 0.05, 0.1). The precursor is weighed according to stoichiometric composition and is milled for 5 hours then compressed at a pressure of 7000 Psi. Sintering temperature for the formation of the barium hexaferrite phase at 1200oC for 2 hours. All samples after sintering were characterized using XRD and EDS.  A single phase is obtained on all sample compositions with a hexagonal P63/mmc structure and is supported by elemental analysis data that each substituted sample contains elements La and Ce. Lattice parameters a, b, and c appear to decrease with increasing concentrations of La and Ce doping ions with a ratio of c/a in the range of 3.93-3.94.

Downloads

Download data is not yet available.

References

Adnyana, I. G. A. P., Suarbawa, K. N., Adi, W. A., Wardani, N. N. S. K., & Jalut, L. L. S. (2019). The Effect of Lanthanum Substitution on the Coercivity Field in Oxide Permanent Magnet Based on Ba1-xLaxFe12O19:(X= 0; 0.02; 0.04; and 0.08). International journal of physical sciences and engineering, 3(1), 42-49.

Adnyana, I. G. A. P., Sukarasa, I. K., & Adi, W. A. (2020). Rare earth ion contribution in barium hexaferrite structure to a change of magnetocrystalline anisotropy to improving its magnetic properties. International Journal of Physical Sciences and Engineering, 4(2), 1-13.

Bahadur, A., Saeed, A., Iqbal, S., Shoaib, M., Ahmad, I., ur Rahman, M. S., ... & Hussain, W. (2017). Morphological and magnetic properties of BaFe12O19 nanoferrite: A promising microwave absorbing material. Ceramics International, 43(9), 7346-7350. https://doi.org/10.1016/j.ceramint.2017.03.039

El Shater, R. E., El-Ghazzawy, E. H., & El-Nimr, M. K. (2018). Study of the sintering temperature and the sintering time period effects on the structural and magnetic properties of M-type hexaferrite BaFe12O19. Journal of Alloys and Compounds, 739, 327-334. https://doi.org/10.1016/j.jallcom.2017.12.228

Fisher, J. G., Sun, H., Kook, Y. G., Kim, J. S., & Le, P. G. (2016). Growth of single crystals of BaFe12O19 by solid state crystal growth. Journal of Magnetism and Magnetic Materials, 416, 384-390. https://doi.org/10.1016/j.jmmm.2016.04.079

Haritsah, I., Adi, W. A., Purwani, M. V., & Manaf, A. (2019, March). Improved separation of Ce, La, and Nd from a concentrate of rare-earth hydroxide via fractional precipitation. In IOP Conference Series: Materials Science and Engineering (Vol. 496, No. 1, p. 012013). IOP Publishing.

Li, R., Pang, S., Ma, C., & Zhang, T. (2007). Influence of similar atom substitution on glass formation in (La–Ce)–Al–Co bulk metallic glasses. Acta Materialia, 55(11), 3719-3726. https://doi.org/10.1016/j.actamat.2007.02.026

Mosleh, Z., Kameli, P., Ranjbar, M., & Salamati, H. (2014). Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexaferrite nanoparticles. Ceramics International, 40(5), 7279-7284. https://doi.org/10.1016/j.ceramint.2013.12.068

Nonaka, T., Ohbayashi, G., Toriumi, Y., Mori, Y., & Hashimoto, H. (2000). Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase. Thin Solid Films, 370(1-2), 258-261. https://doi.org/10.1016/S0040-6090(99)01090-1

Rezlescu, L., Rezlescu, E., Popa, P. D., & Rezlescu, N. (1999). Fine barium hexaferrite powder prepared by the crystallisation of glass. Journal of Magnetism and Magnetic Materials, 193(1-3), 288-290. https://doi.org/10.1016/S0304-8853(98)00442-9

Song, X., Wang, Y., An, C., Guo, X., & Li, F. (2008). Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine. Journal of hazardous materials, 159(2-3), 222-229. https://doi.org/10.1016/j.jhazmat.2008.02.009

Vinnik, D. A., Chernukha, A. S., Gudkova, S. A., Zhivulin, V. E., Trofimov, E. A., Tarasova, A. Y., ... & Niewa, R. (2018). Morphology and magnetic properties of pressed barium hexaferrite BaFe12O19 materials. Journal of Magnetism and Magnetic Materials, 459, 131-135. https://doi.org/10.1016/j.jmmm.2017.11.085

Xu, X., Wen, Z., Yang, X., Zhang, J., & Gu, Z. (2006). High lithium ion conductivity glass-ceramics in Li2O–Al2O3–TiO2–P2O5 from nanoscaled glassy powders by mechanical milling. Solid State Ionics, 177(26-32), 2611-2615. https://doi.org/10.1016/j.ssi.2006.04.010

Published

2021-12-16

How to Cite

Adnyana, I. G. A. P., Sukarasa, I. K., & Suarbawa, K. N. (2021). Synthesis and characterization of permanent magnetic oxide system Ba1-x-yLaxCeyFe12O19 system doped with La-Ce metal using wet mechanical milling method. International Journal of Chemical & Material Sciences, 4(1), 43-48. https://doi.org/10.21744/ijcms.v4n1.1797