Study of the effect of lanthanum and cerium doping combination on magnetic properties of M-type hexaferrite oxide permanent magnets

https://doi.org/10.21744/ijcms.v5n1.2052

Authors

  • I Gusti Agung Putra Adnyana Program of Physics study, Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Denpasar, Indonesia
  • Komang Ngurah Suarbawa Program of Physics study, Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Denpasar, Indonesia

Keywords:

Lanthanum, magnet oxide, magnetic properties, M-type hexaferrite, permagraph

Abstract

A study has been carried out on the effect of combination of Lanthanum and Cerium doping on the magnetic properties of M-Type hexaferrite permanent magnet oxide. The research was conducted using the wet mechanical milling method. The research materials used were Fe2O3, BaCO3, La2O3, and CeO2, all of which were of high purity 99.9%. This research also uses technical materials such as Ethanol and Nitrogen. Stoichiometric calculations were carried out to calculate the composition of the mixture of each ingredient. The combination of Lanthanum and Cerium substitution was varied with the composition of the doping ion concentration (x = 0 – 0.5 and y = 0 – 0.1). Permagraph characterization was carried out to determine the magnetic properties of each test sample. Results based on the permagraph characterization, the properties of M-type hexaferrite permanent magnets increased with the increase in the doping ion concentration in the sample. The presence of doping ions that have a magnetic moment is strongly suspected to contribute to the interaction of the type and the total moment in the M- type hexaferrite structure.

Downloads

Download data is not yet available.

References

Adnyana, I. G. A. P., Suarbawa, K. N., Adi, W. A., Wardani, N. N. S. K., & Jalut, L. L. S. (2019). The Effect of Lanthanum Substitution on the Coercivity Field in Oxide Permanent Magnet Based on Ba1-xLaxFe12O19:(X= 0; 0.02; 0.04; and 0.08). International journal of physical sciences and engineering, 3(1), 42-49.

Adnyana, I. G. A. P., Sukarasa, I. K., & Adi, W. A. (2020). Rare earth ion contribution in barium hexaferrite structure to a change of magnetocrystalline anisotropy to improving its magnetic properties. International Journal of Physical Sciences and Engineering, 4(2), 1-13.

Bahadur, A., Saeed, A., Iqbal, S., Shoaib, M., Ahmad, I., ur Rahman, M. S., ... & Hussain, W. (2017). Morphological and magnetic properties of BaFe12O19 nanoferrite: A promising microwave absorbing material. Ceramics International, 43(9), 7346-7350.

Coey, J. M. D. (2006). Dilute magnetic oxides. Current Opinion in Solid State and Materials Science, 10(2), 83-92. https://doi.org/10.1016/j.cossms.2006.12.002

Coey, J. M. D., & Sun, H. (1990). Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in anmonia. Journal of Magnetism and magnetic materials, 87(3), L251-L254. https://doi.org/10.1016/0304-8853(90)90756-G

El Shater, R. E., El-Ghazzawy, E. H., & El-Nimr, M. K. (2018). Study of the sintering temperature and the sintering time period effects on the structural and magnetic properties of M-type hexaferrite BaFe12O19. Journal of Alloys and Compounds, 739, 327-334.

Fisher, J. G., Sun, H., Kook, Y. G., Kim, J. S., & Le, P. G. (2016). Growth of single crystals of BaFe12O19 by solid state crystal growth. Journal of Magnetism and Magnetic Materials, 416, 384-390.

Gupta, M., & Khan, M. A. (2021). Advances in applications of non-destructive testing (NDT): a review. International Research Journal of Engineering, IT & Scientific Research, 7(3), 76–86. https://doi.org/10.21744/irjeis.v7n3.1003

Haritsah, I., Adi, W. A., Purwani, M. V., & Manaf, A. (2019, March). Improved separation of Ce, La, and Nd from a concentrate of rare-earth hydroxide via fractional precipitation. In IOP Conference Series: Materials Science and Engineering (Vol. 496, No. 1, p. 012013). IOP Publishing.

Kortz, U., Mueller, A., van Slageren, J., Schnack, J., Dalal, N. S., & Dressel, M. (2009). Polyoxometalates: Fascinating structures, unique magnetic properties. Coordination Chemistry Reviews, 253(19-20), 2315-2327. https://doi.org/10.1016/j.ccr.2009.01.014

Lechevallier, L., & Le Breton, J. M. (2005). Substitution effects in M-type hexaferrite powders investigated by Mössbauer spectrometry. Journal of magnetism and magnetic materials, 290, 1237-1239. https://doi.org/10.1016/j.jmmm.2004.11.411

Li, R., Pang, S., Ma, C., & Zhang, T. (2007). Influence of similar atom substitution on glass formation in (La–Ce)–Al–Co bulk metallic glasses. Acta Materialia, 55(11), 3719-3726.

Mathews, S. A., & Babu, D. R. (2021). Analysis of the role of M-type hexaferrite-based materials in electromagnetic interference shielding. Current Applied Physics, 29, 39-53. https://doi.org/10.1016/j.cap.2021.06.001

Mosleh, Z., Kameli, P., Ranjbar, M., & Salamati, H. J. C. I. (2014). Effect of annealing temperature on structural and magnetic properties of BaFe12O19 hexaferrite nanoparticles. Ceramics International, 40(5), 7279-7284.

Neumann, A., & Walter, D. (2006). The thermal transformation from lanthanum hydroxide to lanthanum hydroxide oxide. Thermochimica acta, 445(2), 200-204. https://doi.org/10.1016/j.tca.2005.06.013

Nonaka, T., Ohbayashi, G., Toriumi, Y., Mori, Y., & Hashimoto, H. (2000). Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase. Thin Solid Films, 370(1-2), 258-261.

Oliveira, L. C., Rios, R. V., Fabris, J. D., Garg, V., Sapag, K., & Lago, R. M. (2002). Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon, 40(12), 2177-2183. https://doi.org/10.1016/S0008-6223(02)00076-3

Rajini N, H. (2017). Automatic classification of MR brain tumor images using KNN, ANN, SVM and CNN. International Research Journal of Engineering, IT & Scientific Research, 3(1), 36–44. https://doi.org/10.21744/irjeis.v3n1.895

Rezlescu, L., Rezlescu, E., Popa, P. D., & Rezlescu, N. (1999). Fine barium hexaferrite powder prepared by the crystallisation of glass. Journal of Magnetism and Magnetic Materials, 193(1-3), 288-290.

Salimkhani, H., Movassagh-Alanagh, F., Aghajani, H., & Osouli-Bostanabad, K. (2015). Study on the magnetic and microwave properties of electrophoretically deposited nano-Fe3O4 on carbon fiber. Procedia Materials Science, 11, 231-237. https://doi.org/10.1016/j.mspro.2015.11.118

Sardjono, P. (2015). Preparation and characterization of 5 wt.% epoxy resin bonded magnet NdFeB for micro generator application. Energy Procedia, 68, 282-287. https://doi.org/10.1016/j.egypro.2015.03.257

Simner, S. P., Bonnett, J. F., Canfield, N. L., Meinhardt, K. D., Shelton, J. P., Sprenkle, V. L., & Stevenson, J. W. (2003). Development of lanthanum ferrite SOFC cathodes. Journal of power sources, 113(1), 1-10. https://doi.org/10.1016/S0378-7753(02)00455-X

Vinnik, D. A., Chernukha, A. S., Gudkova, S. A., Zhivulin, V. E., Trofimov, E. A., Tarasova, A. Y., ... & Niewa, R. (2018). Morphology and magnetic properties of pressed barium hexaferrite BaFe12O19 materials. Journal of Magnetism and Magnetic Materials, 459, 131-135.

Xu, X., Wen, Z., Yang, X., Zhang, J., & Gu, Z. (2006). High lithium ion conductivity glass-ceramics in Li2O–Al2O3–TiO2–P2O5 from nanoscaled glassy powders by mechanical milling. Solid State Ionics, 177(26-32), 2611-2615.

Published

2022-12-23

How to Cite

Adnyana, I. G. A. P., & Suarbawa, K. N. (2022). Study of the effect of lanthanum and cerium doping combination on magnetic properties of M-type hexaferrite oxide permanent magnets. International Journal of Chemical & Material Sciences, 5(1), 34-37. https://doi.org/10.21744/ijcms.v5n1.2052