General information about the design of smart grids in universities

Authors

  • Guillermo Antonio Loor Castillo Doctorate Program, is professor School of Electrical Engineering, Universidad Tecnica de Manabi, Portoviejo, Ecuador
  • Yolanda Eugenia Llosas Albuerne Ph.D. automatic control, professor of processes, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
  • Miguel Castro Fernández Ph.D. Electrical Engineering, Electronic engineer, a specialist in distributed generation. Instituto Superior Politécnico, Cujae. Havana, Cuba
  • Lenin Agustin Cuenca Alava Doctorate Program, professor School of Electrical Engineering, Universidad Técnica de Manabí, Portoviejo, Ecuador

Keywords:

energy management, home automation, intelligent agents, smart grid, wireless networks

Abstract

Until recently, the dominant paradigm in the electrification consisted of universal service and its centralization, and for loor modern times think of the power grid of the future where a qualitative and radical leap is required because of the need to manage better energy resources, promote environmental protection and meet the increasingly demanding requirements of quality of service. A power distribution network becomes intelligent acquiring data, communicating, processing information and exercising control through a feedback that allows you to adjust to changes that may arise in actual operation. Ecuador aimed at energy efficiency through smart grids, which allow the dealer to maintain absolute monitoring of energy flow and the elements of the power grid. Thus, it is possible that service companies can efficiently manage their assets and the end user to manage consumption rationally, requiring to enhance the energy efficiency of power grids, one management timely and efficient energy.

Downloads

Download data is not yet available.

References

Al-Hader, M., & Rodzi, A. (2009). The smart city infrastructure development & monitoring. Theoretical and Empirical Researches in Urban Management, 4(2 (11), 87-94.

Chung, I. Y., Yoo, C. H., & Oh, S. J. (2013). Distributed intelligent microgrid control using multi-agent systems. Engineering, 5(01), 1.

Correa Maza, O. I. (2010). Estudio de reconfiguración y optimización de los alimentadores de la subestación Machala perteneciente a la Corporación Nacional de Electricidad SA-Regional El Oro (Bachelor's thesis).

Lo, C. H., & Ansari, N. (2012). The progressive smart grid system from both power and communications aspects. IEEE Communications Surveys & Tutorials, 14(3), 799-821. https://doi.org/10.1109/SURV.2011.072811.00089

Martínez Ochoa, S. (2012). Smart Grids: presente y futuro del sistema eléctrico (Bachelor's thesis).

McGranaghan, M. F., Mueller, D. R., & Samotyj, M. J. (1993). Voltage sags in industrial systems. IEEE Transactions on industry applications, 29(2), 397-403.

Restrepo, S. E., Pezoa, J. E., & Carranza, D. A. O. (2014). An adaptive architecture for ambient intelligence based on meta-modeling, smart agents, and wireless sensor networks. IEEE Latin America Transactions, 12(8), 1508-1514. https://doi.org/10.1109/TLA.2014.7014521

Sauras, B., Rivas, D., & Aguado, M. (2009). Microrredes eléctricas: Concepto, perspectivas y líneas de desarrollo. Energía: Revista de Ingeniería Energética, (217), 80-86.

Vizoso, A. F., Piegari, L., & Tricoli, P. (2010, April). A photovoltaic power unit providing ancillary services for smart distribution networks. In Intl. Conf. on Renewable Energies and Power Quality, Las Palmas, Spain.

Published

2016-09-30

How to Cite

Castillo, G. A. L., Albuerne, Y. E. . L., Fernández, M. C., & Alava, L. A. C. (2016). General information about the design of smart grids in universities. International Research Journal of Engineering, IT & Scientific Research, 2(9), 59–66. Retrieved from https://sloap.org/journals/index.php/irjeis/article/view/514

Issue

Section

Research Articles