Fraud prevention through risk-based auditing at Bali Village Credit Institutions

https://doi.org/10.21744/ijbem.v8n1.2374

Authors

  • Murtapa Udayana University, Denpasar, Indonesia
  • I Ketut Sujana Udayana University, Denpasar, Indonesia
  • Anak Agung Gde Putu Widanaputra Udayana University, Denpasar, Indonesia
  • I Wayan Suartana Udayana University, Denpasar, Indonesia

Keywords:

Fraud Prevention, Risk Management, Risk-Based Performance Audit

Abstract

The Village Credit Institution Empowerment Agency needs to build risk management at the Village Credit Institution to effectively implement risk-based performance audits. The Village Credit Institution Empowerment Agency must guide to develop policies related to fraud prevention at the Village Credit Institution to secure public money. The informants in the study were the coordinators of the Village Credit Institution Empowerment Institution of Tabanan Regency, Badung Regency, and the Chairperson of the Village Credit Institution Empowerment Institution of Bali Province. Selection of informants using snowball sampling technique. The case study analysis unit uses a thematic analysis approach, where the themes carried are risk management, risk-based performance audits, and fraud handling at the Village Credit Institution Empowerment Agency. The results of the analysis and explanations from informants show that risk management at the Village Credit Institution in Tabanan and Badung Regencies still needs improvement, including risk management policies, and risk registers. The Tabanan and Badung Regency Village Credit Institutions Empowerment Institutions in preparing audit plans have not been based on risk registers. The Bali Province Village Credit Institution Empowerment Agency has not made a fraud control policy for Village Credit Institutions.  

Downloads

Download data is not yet available.

References

Adnyani, K. S., & Setiawan, A. (2017). Praktik Tata Kelola dalam Perspektif Nilai Budaya Lokal pada Lembaga Perkreditan Desa (LPD). ABIS: Accounting and Business Information Systems Journal, 5(4).

Albrecht, W. S., Albrecht, C. O., Albrecht, C. C., & Zimbelman, M. F. (2012). Fraud Examination. South-Western Cengage Learning. Mason, OH.

Candraningtyas, O. D. (2024). Pengaruh Kemampuan Auditor dalam Mendeteksi Fraud Kompetensi, Profesionalisme, dan Pengalaman Audit, Jurnal Ilmiah Manajemen Ekonomi Dan Akuntansi, 1(4), 283-290.

Daliri, S. (2020). Using harmony search algorithm in neural networks to improve fraud detection in banking system. Computational Intelligence and Neuroscience, 2020(1), 6503459.

Efrizon, E., Febrianto, R., & Kartika, R. (2020). The impact of internal control and individual morals on fraud: An experimental study. Jurnal Ilmiah Akuntansi Dan Bisnis, 15(1), 119.

Fitri, F. A., Syukur, M., & Justisa, G. (2019). Do the fraud triangle components motivate fraud in Indonesia. Australasian Accounting, Business and Finance Journal, 13(4), 63-72.

Geng, X., & Yang, D. (2021). Intelligent prediction mathematical model of industrial financial fraud based on data mining. Mathematical Problems in Engineering, 2021(1), 8520094.

Ginanjar, Y., & Syamsul, E. M. (2020). Peran auditor internal dalam pendeteksian dan pencegahan fraud pada bank syariah di kota bandung. Jurnal Ilmiah Ekonomi Islam, 6(3), 529-534.

Hardani, H., Ustiawaty, J., & Utami, E. F. (2020). Buku metode penelitian kualitatif & kuantitatif, CV. Pustaka Ilmu Grou. Tersedia pada: https://www. researchgate. net/publication/34002154.

Hong, L. T. T. (2023). Research on financial autonomy and financial management in public higher education. International Journal of Business, Economics and Management, 6(2), 112-122. https://doi.org/10.21744/ijbem.v6n2.2126

Kranacher, M. J., & Riley, R. (2019). Forensic accounting and fraud examination. John Wiley & Sons.

Li, J. (2022). E?Commerce Fraud Detection Model by Computer Artificial Intelligence Data Mining. Computational Intelligence and Neuroscience, 2022(1), 8783783.

Liu, X., & Fan, M. (2022). [Retracted] Identification and Early Warning of Financial Fraud Risk Based on Bidirectional Long?Short Term Memory Model. Mathematical Problems in Engineering, 2022(1), 2342312.

Matthew, Y. O. V. A. N. O. (2018). Implementasi Audit Berbasis Risiko Untuk Meningkatkan Kinerja Otoritas Jasa Keuangan (Studi Kasus Pada Otoritas Jasa Keuangan). Universitas Brawijaya, 7 (1). Universitas Brawijaya, 7(1).

Mekarisce, A. A. (2020). Teknik pemeriksaan keabsahan data pada penelitian kualitatif di bidang kesehatan masyarakat. Jurnal Ilmiah Kesehatan Masyarakat: Media Komunikasi Komunitas Kesehatan Masyarakat, 12(3), 145-151.

Messier Jr, W. F. (2014). An approach to learning risk-based auditing. Journal of accounting Education, 32(3), 276-287. https://doi.org/10.1016/j.jaccedu.2014.06.003

Milgram, S. (1963). Behavioral study of obedience. The Journal of abnormal and social psychology, 67(4), 371.

Nataludin, C., & Samputra, P. L. (2023). Evaluation of The Drug-Free Village Program (Program Desa Bersinar) In Indonesia. Journal of Strategic and Global Studies, 6(2), 2.

Ningsih, K. R. R., Budiartha, K., Sujana, I. K., & Putra, I. N. W. A. (2022). Budaya Catur Purusa Artha Memoderasi Love of Money dan Sifat Machiavellian, Terhadap Indikasi Fraud. E-Jurnal Akuntansi, 32(7), 1812-1827.

Omidi, M., Min, Q., Moradinaftchali, V., & Piri, M. (2019). The efficacy of predictive methods in financial statement fraud. Discrete Dynamics in Nature and Society, 2019(1), 4989140.

Petra?cu, D., & Tieanu, A. (2014). The role of internal audit in fraud prevention and detection. Procedia Economics and Finance, 16, 489-497. https://doi.org/10.1016/S2212-5671(14)00829-6

Polit, D. F., & Beck, C. T. (2004). Nursing research: Principles and methods. Lippincott Williams & Wilkins.

Power, M. (2009). The risk management of nothing. Accounting, organizations and society, 34(6-7), 849-855. https://doi.org/10.1016/j.aos.2009.06.001

Qin, R. (2021). Identification of accounting fraud based on support vector machine and logistic regression model. Complexity, 2021(1), 5597060.

Sanober, S., Alam, I., Pande, S., Arslan, F., Rane, K. P., Singh, B. K., ... & Shabaz, M. (2021). An enhanced secure deep learning algorithm for fraud detection in wireless communication. Wireless Communications and Mobile Computing, 2021(1), 6079582.

Seeja, K. R., & Zareapoor, M. (2014). Fraudminer: A novel credit card fraud detection model based on frequent itemset mining. The Scientific World Journal, 2014(1), 252797.

Setiawan, A. R. (2019). Interpretasi Baru “Malo” dan Penegakan Karakter Kejujuran: Tafsir Budaya (wan) Madura atas “Sisi Gelap” Pengelolaan Keuangan Daerah (Studi Bid’ah Hermeneutics). Jurnal Ilmiah Akuntansi Dan Bisnis, 14(2), 251-264.

Setiawan, N., & Tarjo, H. (2022). B.(2022). Asset Misappropriation Employee Fraud: A Case Study on an Automotive Company. Jurnal Ilmiah Akuntansi dan Bisnis, 17 (2), 214-233.

Suari, N. M., Putra, I. G. C., & Sunarwijaya, I. K. (2019, December). Kualitas Pelaporan Keuangan Lembaga Perkreditan Desa Di Kabupaten Gianyar, Bali. In Seminar Nasional Inovasi Dalam Penelitian Sains, Teknologi Dan Humaniora-InoBali (pp. 656-667).

Suartana, I. W., & Jati, I. K. (2017). Risk based internal audit based on culture (Case study at LPD Desa Adat Pecatu in Bali). Risk, 8(18), 190-200.

Sujana, I. K., Suardikha, I. M. S. S., & Dwirandra, A. A. N. B. (2018). Pertumbuhan Laba Pada Lembaga Perkreditan Desa. Jurnal Ilmiah Akuntansi dan Bisnis, 13(2), 185-196.

Vousinas, G. L. (2019). Advancing theory of fraud: the SCORE model. Journal of Financial Crime, 26(1), 372-381.

Wang, T (2022). Countermeasure of Telecom Network Fraud Investigation Based on Big Data. Hindawi Scientific Programming. 2022 (13).

Widaningsih, M., & Hakim, D. N. (2015). Pengaruh Profesionalisme Auditor Internal Terhadap Pencegahan Dan Pendeteksian Kecurangan (Fraud). Jurnal Riset Akuntansi dan Keuangan, 3(1), 586-602.

Widodo, M. (2018). Audit berbasis risiko pada PT SP. Jurnal Ekonomi Dan Kewirausahaan Kreatif, 3(2), 63-73.

Yang, J., Tang, Z., Guan, Z., Hua, W., Wei, M., Wang, C., & Gu, C. (2021). Automatic Feature Engineering?Based Optimization Method for Car Loan Fraud Detection. Discrete dynamics in nature and society, 2021(1), 6077540.

Yin, R. K. (2009). Case study research: Design and methods (Vol. 5). sage.

Zanin, M., Romance, M., Moral, S., & Criado, R. (2018). Credit card fraud detection through parenclitic network analysis. Complexity, 2018(1), 5764370.

Zhang, R., & Zheng, L. (2022). Monitoring and analysis of venture capital and corporate fraud based on deep learning. Computational Intelligence and Neuroscience, 2022(1), 4589593.

Zhang, Z., Zhou, X., Zhang, X., Wang, L., & Wang, P. (2018). A model based on convolutional neural network for online transaction fraud detection. Security and Communication Networks, 2018(1), 5680264.

Zheng, Y., Ye, X., & Wu, T. (2021). [Retracted] Using an Optimized Learning Vector Quantization?(LVQ?) Based Neural Network in Accounting Fraud Recognition. Computational Intelligence and Neuroscience, 2021(1), 4113237.

Published

2025-03-11

How to Cite

Murtapa, M., Sujana, I. K., Widanaputra, A. A. G. P., & Suartana, I. W. (2025). Fraud prevention through risk-based auditing at Bali Village Credit Institutions. International Journal of Business, Economics and Management, 8(1), 27-34. https://doi.org/10.21744/ijbem.v8n1.2374