Autograft and implant cranioplasty in pediatric patients

https://doi.org/10.21744/ijhms.v5n1.1852

Authors

  • Dirga Rachmad Aprianto Department of Neurosurgery, Faculty of Medicine Universitas Airlangga – Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
  • Muhammad Arifin Parenrengi Department of Neurosurgery, Faculty of Medicine Universitas Airlangga – Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
  • Budi Utomo Department of Public Health Science and Preventive Medicine, Faculty of Medicine Universitas Airlangga – Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
  • Asra Al Fauzi Department of Neurosurgery, Faculty of Medicine Universitas Airlangga – Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
  • Eko Agus Subagyo Department of Neurosurgery, Faculty of Medicine Universitas Airlangga – Dr. Soetomo Academic General Hospital, Surabaya, Indonesia

Keywords:

autograft, cranioplasty, implant, infection, revision

Abstract

The use of implants in pediatric cranioplasty is still debatable. Many surgeons prefer to use autologous bone grafts than implants due to previous concerns that implants have a higher risk of infection, allergic response, and are not biocompatible as an autologous bone graft. However, recent studies showed that several implant materials have a similar infection rate following cranioplasty or might be lower compared to autologous bone. Moreover, several studies also reported a high rate of bone flap resorption in autograft cranioplasty, particularly in patients below the age of 8 years, thus requiring revision surgery with an implant as a substitute in most cases. Implant materials also have advantages in several conditions that make them more suitable than autologous bone grafts. This literature review is expected to give information about the type of implant materials that can be used as an alternative to substitute autologous bone grafts in certain conditions.

Downloads

Download data is not yet available.

References

Abu-Ghname, A., Banuelos, J., Oliver, J. D., Vyas, K., Daniels, D., & Sharaf, B. (2019). Outcomes and complications of pediatric cranioplasty: a systematic review. Plastic and reconstructive surgery, 144(3), 433e-443e.

Aydin, S., Kucukyuruk, B., Abuzayed, B., Aydin, S., & Sanus, G. Z. (2011). Cranioplasty: review of materials and techniques. Journal of neurosciences in rural practice, 2(02), 162-167.

Badhey, A., Kadakia, S., Mourad, M., Inman, J., & Ducic, Y. (2017). Calvarial reconstruction. In Seminars in Plastic Surgery (Vol. 31, No. 04, pp. 222-226). Thieme Medical Publishers.

Baumeister, S., Peek, A., Friedman, A., Levin, L. S., & Marcus, J. R. (2008). Management of postneurosurgical bone flap loss caused by infection. Plastic and Reconstructive Surgery, 122(6), 195e-208e.

Bowers, C. A., Riva-Cambrin, J. A. Y., Hertzler, D. A., & Walker, M. L. (2013). Risk factors and rates of bone flap resorption in pediatric patients after decompressive craniectomy for traumatic brain injury. Journal of Neurosurgery: Pediatrics, 11(5), 526-532.

Buchanan, E. P. (2019). Pediatric Craniofacial Surgery: State of the Craft, An Issue of Clinics in Plastic Surgery (Vol. 46, No. 2). Elsevier Health Sciences.

Bykowski, M. R., Goldstein, J. A., & Losee, J. E. (2019). Pediatric cranioplasty. Clinics in Plastic Surgery, 46(2), 173-183.

Dhami, R. llah M. A.-A., Kadhim, B. M., & Abdullhusein, H. S. (2020). A serological study to diagnose the causes of recurrent viral and immune miscarriage in aborted women who attend the shatrah general hospital. International Journal of Health & Medical Sciences, 3(1), 42-47. https://doi.org/10.31295/ijhms.v3n1.131

Diniari, N. K. S., & Aryani, L. N. A. (2022). Characteristics and pharmacological treatment options of delirium patients treated at Sanglah Central General Hospital. International Journal of Health & Medical Sciences, 5(1), 37-43. https://doi.org/10.21744/ijhms.v5n1.1835

Dujovny, M., Aviles, A., Agner, C., Fernandez, P., & Charbel, F. T. (1997). Cranioplasty: cosmetic or therapeutic?. Surgical neurology, 47(3), 238-241. https://doi.org/10.1016/S0090-3019(96)00013-4

Feroze, A. H., Walmsley, G. G., Choudhri, O., Lorenz, H. P., Grant, G. A., & Edwards, M. S. (2015). Evolution of cranioplasty techniques in neurosurgery: historical review, pediatric considerations, and current trends. Journal of neurosurgery, 123(4), 1098-1107.

Fu, K. J., Barr, R. M., Kerr, M. L., Shah, M. N., Fletcher, S. A., Sandberg, D. I., ... & Greives, M. R. (2016). An outcomes comparison between autologous and alloplastic cranioplasty in the pediatric population. Journal of Craniofacial Surgery, 27(3), 593-597.

Gilardino, M. S., Karunanayake, M., Al-Humsi, T., Izadpanah, A., Al-Ajmi, H., Marcoux, J., ... & Farmer, J. P. (2015). A comparison and cost analysis of cranioplasty techniques: autologous bone versus custom computer-generated implants. Journal of Craniofacial Surgery, 26(1), 113-117.

Goldstein, J. A., Paliga, J. T., & Bartlett, S. P. (2013). Cranioplasty: indications and advances. Current opinion in otolaryngology & head and neck surgery, 21(4), 400-409.

Grant, G. A., Jolley, M., Ellenbogen, R. G., Roberts, T. S., Gruss, J. R., & Loeser, J. D. (2004). Failure of autologous bone—assisted cranioplasty following decompressive craniectomy in children and adolescents. Journal of Neurosurgery: Pediatrics, 100(2), 163-168.

Honeybul, S., Morrison, D. A., Ho, K., Wiggins, A., Janzen, C., & Kruger, K. (2013). Complications and consent following decompressive craniectomy: an illustrative case study. Brain Injury, 27(13-14), 1732-1736.

Inamasu, J., Kuramae, T., & Nakatsukasa, M. (2010). Does difference in the storage method of bone flaps after decompressive craniectomy affect the incidence of surgical site infection after cranioplasty? Comparison between subcutaneous pocket and cryopreservation. Journal of Trauma and Acute Care Surgery, 68(1), 183-187.

Jonkergouw, J., van de Vijfeijken, S. E. C. M., Nout, E., Theys, T., Van de Casteele, E., Folkersma, H., ... & Becking, A. G. (2016). Outcome in patient-specific PEEK cranioplasty: a two-center cohort study of 40 implants. Journal of Cranio-Maxillofacial Surgery, 44(9), 1266-1272. https://doi.org/10.1016/j.jcms.2016.07.005

Josan, V. A., Sgouros, S., Walsh, A. R., Dover, M. S., Nishikawa, H., & Hockley, A. D. (2005). Cranioplasty in children. Child's Nervous System, 21(3), 200-204.

Konofaos, P., & Wallace, R. D. (2019). Innovation to pediatric cranioplasty. Journal of Craniofacial Surgery, 30(2), 519-524.

Kuo, J. R., Wang, C. C., Chio, C. C., & Cheng, T. J. (2004). Neurological improvement after cranioplasty–analysis by transcranial https://doi.org/10.1016/j.jocn.2003.06.005

Langford, B. J., So, M., Raybardhan, S., Leung, V., Westwood, D., MacFadden, D. R., ... & Daneman, N. (2020). Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clinical microbiology and infection, 26(12), 1622-1629. https://doi.org/10.1016/j.cmi.2020.07.016

Lee, C. H., Chung, Y. S., Lee, S. H., Yang, H. J., & Son, Y. J. (2012). Analysis of the factors influencing bone graft infection after cranioplasty. Journal of Trauma and Acute Care Surgery, 73(1), 255-260.

Lethaus, B., Safi, Y., ter Laak-Poort, M., Kloss-Brandstätter, A., Banki, F., Robbenmenke, C., ... & Kessler, P. (2012). Cranioplasty with customized titanium and PEEK implants in a mechanical stress model. Journal of neurotrauma, 29(6), 1077-1083.

Manor, Y., Oubaid, S., Mardinger, O., Chaushu, G., & Nissan, J. (2009). Characteristics of early versus late implant failure: a retrospective study. Journal of Oral and Maxillofacial Surgery, 67(12), 2649-2652. https://doi.org/10.1016/j.joms.2009.07.050

Marchac, D., & Greensmith, A. (2008). Long-term experience with methylmethacrylate cranioplasty in craniofacial surgery. Journal of plastic, reconstructive & aesthetic surgery, 61(7), 744-752. https://doi.org/10.1016/j.bjps.2007.10.055

Martin, K. D., Franz, B., Kirsch, M., Polanski, W., von der Hagen, M., Schackert, G., & Sobottka, S. B. (2014). Autologous bone flap cranioplasty following decompressive craniectomy is combined with a high complication rate in pediatric traumatic brain injury patients. Acta neurochirurgica, 156(4), 813-824.

Martini, L., Staffa, G., Giavaresi, G., Salamanna, F., Parrilli, A., Serchi, E., ... & Fini, M. (2012). Long-term results following cranial hydroxyapatite prosthesis implantation in a large skull defect model. Plastic and reconstructive surgery, 129(4), 625e-635e.

Matsuno, A., Tanaka, H., Iwamuro, H., Takanashi, S., Miyawaki, S., Nakashima, M., ... & Nagashima, T. (2006). Analyses of the factors influencing bone graft infection after delayed cranioplasty. Acta neurochirurgica, 148(5), 535-540.

Morales-Gómez, J. A., Garcia-Estrada, E., Leos-Bortoni, J. E., Delgado-Brito, M., Flores-Huerta, L. E., Adriana, A., ... & de León, Á. R. M. P. (2018). Cranioplasty with a low-cost customized polymethylmethacrylate implant using a desktop 3D printer. Journal of neurosurgery, 130(5), 1721-1727.

Piedra, M. P., Thompson, E. M., Selden, N. R., Ragel, B. T., & Guillaume, D. J. (2012). Optimal timing of autologous cranioplasty after decompressive craniectomy in children. Journal of Neurosurgery: Pediatrics, 10(4), 268-272.

Rocque, B. G., Amancherla, K., Lew, S. M., & Lam, S. (2013). Outcomes of cranioplasty following decompressive craniectomy in the pediatric population: a systematic review. Journal of Neurosurgery: Pediatrics, 12(2), 120-125.

Salam, A. A., Ibbett, I., & Thani, N. (2018). Paediatric cranioplasty: a review. Interdisciplinary Neurosurgery, 13, 59-65. https://doi.org/10.1016/j.inat.2018.03.004

Shah, A. M., Jung, H., & Skirboll, S. (2014). Materials used in cranioplasty: a history and analysis. Neurosurgical focus, 36(4), E19.

Singh, H. K., Joshi, A., Malepati, R. N., Najeeb, S., Balakrishna, P., Pannerselvam, N. K., ... & Ganne, P. (2021). A survey of E-learning methods in nursing and medical education during COVID-19 pandemic in India. Nurse education today, 99, 104796. https://doi.org/10.1016/j.nedt.2021.104796

Teixeira, S., Fernandes, H., Leusink, A., van Blitterswijk, C., Ferraz, M. P., Monteiro, F. J., & de Boer, J. (2010). In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 93(2), 567-575.

Weeden, S. H., & Paprosky, W. G. (2002). Minimal 11-year follow-up of extensively porous-coated stems in femoral revision total hip arthroplasty. The Journal of arthroplasty, 17(4), 134-137. https://doi.org/10.1054/arth.2002.32461

Wood, F. M., Kolybaba, M. L., & Allen, P. (2006). The use of cultured epithelial autograft in the treatment of major burn wounds: eleven years of clinical experience. Burns, 32(5), 538-544. https://doi.org/10.1016/j.burns.2006.02.025

Yadla, S., Campbell, P. G., Chitale, R., Maltenfort, M. G., Jabbour, P., & Sharan, A. D. (2011). Effect of early surgery, material, and method of flap preservation on cranioplasty infections: a systematic review. Neurosurgery, 68(4), 1124-1130.

Published

2022-02-05

How to Cite

Aprianto, D. R., Parenrengi, M. A., Utomo, B., Fauzi, A. A., & Subagyo, E. A. (2022). Autograft and implant cranioplasty in pediatric patients. International Journal of Health & Medical Sciences, 5(1), 129-136. https://doi.org/10.21744/ijhms.v5n1.1852

Most read articles by the same author(s)