The pinar del río geography and connected photovoltaic systems to grid

  • Liudmila Fuente Pomares Universidad Tecnológica de la Habana, La Habana, Cuba
  • Antonio Vázquez Pérez Universidad Técnica de Manabí, Portoviejo, Ecuador
  • María Rodríguez Gámez Universidad Técnica de Manabí, Portoviejo, Ecuador
Keywords: distributed generation, geographic information system, photovoltaic systems, solar potential, territorial ordination

Abstract

The affectations that are reported starting from the use of the petroleum in the energy production of the country in the economic and environmental, open an analysis space for the search of alternative sustainable in the electric generation, based on the employment of the renewable potential that exists in the territories. In these works, analyzed the evaluation of the territorial space of the Pinar del Río county was presented that can be used for the development from the connected photovoltaic systems to the grid. Like a viable energy alternative that propitiates the reduction of the environmental impacts and natural disasters, at the same time that it constitutes an economically sustainable solution, when not having to incur in expenses of resources to acquire the fuel that today has used with those purposes. This county through the years, it has been impacted by phenomena hydrometeorology extreme reason by which you the program of the distributed generation to give vitality to the electric service began. 

Downloads

Download data is not yet available.

References

Ackermann, T., Andersson, G., & Söder, L. (2001). Distributed generation: a definition. Electric power systems research, 57(3), 195-204. https://doi.org/10.1016/S0378-7796(01)00101-8

Arauz, W. M. S., Cedeño, G. I., Chávez, S. S., Pérez, A. V., & Gámez, M. R. (2017). Microgrid with a 3.4 kWp photovoltaic system in the Universidad Técnica de Manabí. International Journal of Physical Sciences and Engineering, 1(2), 11-20. https://doi.org/10.21744/ijpse.v1i2.34

Arauz, W. M. S., Gamez, M. R., Perez, A. V., & Fernandez, M. C. (2016). Microgrids views from a geographic information system. International Research Journal of Engineering, IT & Scientific Research, 2(11), 57-65.

Bastian, C. T., McLeod, D. M., Germino, M. J., Reiners, W. A., & Blasko, B. J. (2002). Environmental amenities and agricultural land values: a hedonic model using geographic information systems data. Ecological economics, 40(3), 337-349. https://doi.org/10.1016/S0921-8009(01)00278-6

Bazurto, J. J. B., Falcones, V. A. M., Gámez, M. R., & Arvelo, M. G. V. (2019). Geographic information system for manabí sustainable development. International Research Journal of Management, IT and Social Sciences, 6(6), 17-28. https://doi.org/10.21744/irjmis.v6n6.741

Belvinel, E.-T. G., Loor, G. A., Chilan, J. C. H., & Gamez, M. R. (2018). Photovoltaic system implementation in baltra and puerto ayora islands. International Journal of Life Sciences, 2(3), 20-27. https://doi.org/10.29332/ijls.v2n3.200

Bishop, I. D., & Hulse, D. W. (1994). Prediction of scenic beauty using mapped data and geographic information systems. Landscape and urban planning, 30(1-2), 59-70. https://doi.org/10.1016/0169-2046(94)90067-1

BOE. (2004). Ley 4/2004, de 30 de Junio, de Ordenación del Territorio y Protección del paisaje. D.O.G.V. no 4788, de 2 Junio de 2004; BOE no 174, 20 de Junio de 2006(España), 2.

Borges, C. L., & Falcao, D. M. (2006). Optimal distributed generation allocation for reliability, losses, and voltage improvement. International Journal of Electrical Power & Energy Systems, 28(6), 413-420. https://doi.org/10.1016/j.ijepes.2006.02.003

Chuvieco, E., & Congalton, R. G. (1989). Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote sensing of Environment, 29(2), 147-159. https://doi.org/10.1016/0034-4257(89)90023-0

Clark, D. R., Klein, S. A., & Beckman, W. A. (1984). A method for estimating the performance of photovoltaic systems. Solar Energy, 33(6), 551-555. https://doi.org/10.1016/0038-092X(84)90010-0

Cox, A. B. (1995). An overview to geographic information systems. The Journal of Academic Librarianship, 21(4), 237-249. https://doi.org/10.1016/0099-1333(95)90003-9

Cuba., C. d. N. (1987). Paisaje, términos y definiciones. NC.

Dominguez, J., Rodríguez, M., & Pinedo, I. (2009). Aplicación de los Sistemas de Información Geográfica en el Ordenamiento Territorial y la planeación de las fuentes renovables de energía en el municipio de Guamá (Cuba). Revista . Informes técnicos CIEMAT. Vol. 1182, No. 0-101, pag. 120.

Dondi, P., Bayoumi, D., Haederli, C., Julian, D., & Suter, M. (2002). Network integration of distributed power generation. Journal of power sources, 106(1-2), 1-9. https://doi.org/10.1016/S0378-7753(01)01031-X

Ghosh, S., Ghoshal, S. P., & Ghosh, S. (2010). Optimal sizing and placement of distributed generation in a network system. International Journal of Electrical Power & Energy Systems, 32(8), 849-856. https://doi.org/10.1016/j.ijepes.2010.01.029

Giraudy, M., Rodriguez, M., Massipe, I., Vazquez, A., & Rodiguez, R. (2014). Factibilidad de instalación de sistemas fotovoltaicos conectados a red. Ingeniería Energética, vol. 35. No. 2. ISSN 1815-5901

Hachem, C., Athienitis, A., & Fazio, P. (2011). Parametric investigation of geometric form effects on solar potential of housing units. Solar Energy, 85(9), 1864-1877. https://doi.org/10.1016/j.solener.2011.04.027

Jensen, J. R., & Christensen, E. J. (1986). Solid and hazardous waste disposal site selection using digital geographic information system techniques. Science of the total environment, 56, 265-276. https://doi.org/10.1016/0048-9697(86)90331-1

Keller, L., & Affolter, P. (1995). Optimizing the panel area of a photovoltaic system in relation to the static inverter—Practical results. Solar Energy, 55(1), 1-7. https://doi.org/10.1016/0038-092X(95)00032-M

Ledjeff, K. (1990). Comparison of storage options for photovoltaic systems. International Journal of Hydrogen Energy, 15(9), 629-633. https://doi.org/10.1016/0360-3199(90)90142-L

Leeuwen, A.V. (2001). Ordenamiento Territorial: Un proceso participativo, sostenible y de democratización. Proyecto Información sobre Tierras y Aguas para un Desarrollo Agrícola Sostenible.(GCP/RLA/126/JPN.).

Li, D., Liu, G., & Liao, S. (2015). Solar potential in urban residential buildings. Solar energy, 111, 225-235. https://doi.org/10.1016/j.solener.2014.10.045

Mantuano, J. L. S., Vera, M. J. C., & Cedeño, E. N. (2019). Factors of photovoltaic system cost affect in Ecuador. International Research Journal of Engineering, IT & Scientific Research, 5(6), 1-11. https://doi.org/10.21744/irjeis.v5n6.721

Niknam, T., Ranjbar, A. M., & Shirani, A. R. (2003). Volt/Var control in distribution networks with distributed generation. IFAC Proceedings Volumes, 36(20), 547-552. https://doi.org/10.1016/S1474-6670(17)34526-3

Notton, G., Muselli, M., Poggi, P., & Louche, A. (1996). Autonomous photovoltaic systems: Influences of some parameters on the sizing: Simulation timestep, input and output power profile. Renewable Energy, 7(4), 353-369. https://doi.org/10.1016/0960-1481(96)00017-1

ONE. (2007). Anuario estadistico de Cuba y sus territorio. Provincia de Pinar del Río. Oficina Nacional de Estadística, CD

ONU. (1992.). Agenda 21 de la ONU.

Peña, L. (2005). Sistema de Información Geográfica: Herramienta para el Desarrollo Local Sostenible. Centro de Estudio de Desarrollo Agrario y Rural.

Pepermans, G., Driesen, J., Haeseldonckx, D., Belmans, R., & D’haeseleer, W. (2005). Distributed generation: definition, benefits and issues. Energy policy, 33(6), 787-798. https://doi.org/10.1016/j.enpol.2003.10.004

Pérez, A. V. P., Borges, C. G. R. B., & Rodríguez, J. A. P. R. (2019). Photovoltaic system proposal for a house. International Journal of Physical Sciences and Engineering, 3(2), 34-43. https://doi.org/10.29332/ijpse.v3n2.330

Perez, A., Vazquez, Perez, A., Moreno, J., Diaz, R. (2018). Energy interpretation of solar radiation affects for Artemisa province. International journal of physical sciences and engineering. Vol. 2, No. 2, Pág. 39-49. https://sciencescholar.us/journal/index.php/ijpse/article/view/142.

Post, H. N., & Thomas, M. G. (1988). Photovoltaic systems for current and future applications. Solar Energy, 41(5), 465-473. https://doi.org/10.1016/0038-092X(88)90020-5

Redweik, P., Catita, C., & Brito, M. (2013). Solar energy potential on roofs and facades in an urban landscape. Solar Energy, 97, 332-341. https://doi.org/10.1016/j.solener.2013.08.036

Rodríguez, C., Sarmiento, A., & Rodríguez, M. (2015). Modelo para la valoración integral de tecnologías de electrificación rural. Ingeniería Energética versión On-line ISSN 1815-5901. Energética 36(2).

Rodríguez, Espino, Vázquez & Díaz. (2012). Normas técnicas y sistemas fotovoltaicos conectados a red. Rev. Ecosolar. 39(2), 11.

Rodriguez. M. (2011). La ordenación y la planificación de las fuentes renovables de energía en la Isla de Cuba desde una perspectiva territorial. Estudio de caso en el municipio de Guama a partir de un Geoportal. Memoria presentada para obtener el Grado Científico de Doctora, Facultad de Humanidades, de la Universidaad Pablo de Olavides, Sevilla España.

Samet, H., Rosenfeld, A., Shaffer, C. A., & Webber, R. E. (1984). A geographic information system using quadtrees. Pattern Recognition, 17(6), 647-656. https://doi.org/10.1016/0031-3203(84)90018-9

Sauer, D. U., Bächler, M., Bopp, G., Höhe, W., Mittermeier, J., Sprau, P., ... & Wollny, M. (1997). Analysis of the performance parameters of lead/acid batteries in photovoltaic systems. Journal of Power Sources, 64(1-2), 197-201. https://doi.org/10.1016/S0378-7753(96)02522-0

Suarez, K. L. C., Carlos, A. G. J., Cuenca, L. A. S., Zambranod, J. A. G., & Ponce, Ángel A. A. (2018). Demand in abdon calderon parish for possible installation of photovoltaic systems. International Journal of Physical Sciences and Engineering, 2(3), 62-69. https://doi.org/10.29332/ijpse.v2n3.218

Sumba, E. F. S., Sumba, A. V. S., Castillo, G. A. L., & Rodríguez, J. A. P. (2020). Impact of distributed generation in the electrical system of Ecuador. International Journal of Physical Sciences and Engineering, 4(1), 1-10. https://doi.org/10.29332/ijpse.v4n1.389

SWERA. (2009). Solar and Wind Energy Resource Assessment (SWERA) SWERA Web Service.

Torres, M., Domínguez, J., Rodríguez, M. & Peña, M. (2019). Herramienta para la planificación de la electrificación rural teniendo en cuenta criterios del ordenamiento territorial. Revista Cubana de Ciencias Informáticas. 13(3), 1-15.

Tsalikis, G., & Martinopoulos, G. (2015). Solar energy systems potential for nearly net zero energy residential buildings. Solar Energy, 115, 743-756. https://doi.org/10.1016/j.solener.2015.03.037

Vlachopoulou, M., Silleos, G., & Manthou, V. (2001). Geographic information systems in warehouse site selection decisions. International journal of production economics, 71(1-3), 205-212. https://doi.org/10.1016/S0925-5273(00)00119-5

Voivontas, D., Tsiligiridis, G., & Assimacopoulos, D. (1998). Solar potential for water heating explored by GIS. Solar Energy, 62(6), 419-427. https://doi.org/10.1016/S0038-092X(98)00027-9

Yamaguchi, M., Takamoto, T., Araki, K., & Ekins-Daukes, N. (2005). Multi-junction III–V solar cells: current status and future potential. Solar Energy, 79(1), 78-85. https://doi.org/10.1016/j.solener.2004.09.018

Published
2020-04-06
How to Cite
Pomares, L. F., Pérez, A. V., & Gámez, M. R. (2020). The pinar del río geography and connected photovoltaic systems to grid. International Research Journal of Management, IT and Social Sciences, 7(3), 1-10. https://doi.org/10.21744/irjmis.v7n3.882
Section
Research Articles